
© Pittsburgh Supercomputing Center, All Rights Reserved© Pittsburgh Supercomputing Center, All Rights Reserved

Bridges-2 Webinar
Utilizing Bridges-2 for State-of-the-Art Open Source Large Language
Models

May 24, 2024

Mei-Yu Wang

Pittsburgh Supercomputing Center

© Pittsburgh Supercomputing Center, All Rights Reserved

Pittsburgh
Supercomputing Center

enabling discovery since 1986

The Pittsburgh Supercomputing Center (PSC) provides advanced
research computing capability, education, and expertise to the national
research community.

Since 1986, PSC has provided university, government, and industry
researchers with access to some of the most powerful systems available
for high-performance computing, enabling discovery across all fields of
science.

OUR AREAS OF EXPERTISE

• high-performance and data-intensive computing
• data management technologies
• software architecture, implementation, and optimization
• enabling ground-breaking science, computer science, and engineering
• user support for all phases of research and education
• STEM outreach in data science, bioinformatics, and coding

© Pittsburgh Supercomputing Center, All Rights Reserved

Welcome!

© Pittsburgh Supercomputing Center, All Rights Reserved

Bridges-2 Leadership Team

Sergiu Sanielevici
PI & Dir. Support

for Sci. Apps.

Paola Buitrago
Dir. AI & Big Data

co-PI

Robin Scibek
Dir. Comms.

co-PI

Stephen Deems
Project Manager

Tom Maiden
User Services Mgr.

co-PI

Edward Hanna
Dir. Systems & Ops.

co-PI

Andrew Adams
Information Security

Officer

© Pittsburgh Supercomputing Center, All Rights Reserved

Bridges-2 Webinars

• A forum for the Bridges-2 community to learn and share

ideas and achievements: Bridges-2 Webinar series | PSC

• Topics and speakers of interest to work that is being

done, or that may be done in future.

• Please suggest future speakers (including from your own

team) and/or topics (including your own)!

Just email: sergiu@psc.edu

https://www.psc.edu/events/bridges-2-webinar-series/

© Pittsburgh Supercomputing Center, All Rights Reserved

Introducing today’s presenter: Dr. Mei-Yu Wang

Mei-Yu Wang acquired her Ph.D. in astrophysics from the

University of Pittsburgh. Her doctoral research focused on

developing novel probes for studying dark matter. She did

postdoctoral research in studying dark matter and the Milky

Way at the Texas A&M University and Carnegie Mellon

University befores she joined the HPC AI and Big Data Group

group at PSC in 2022. Her primary roles now include

addressing support requests and developing tests and

benchmarking for the Neocortex system and the Open

Compass project.

https://www.cmu.edu/psc/aibd/neocortex/index.html
https://www.cmu.edu/psc/aibd/compass.html
https://www.cmu.edu/psc/aibd/compass.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Q&A Logistics

• We abide by https://support.access-ci.org/code-of-conduct

• All of us except Mei-Yu will be muted during his presentation.

• Please type your questions into the Zoom chat.

• We may be able to address some questions in the chat while

Mei-Yu is presenting.

• When Mei-Yu finishes her presentation, she will answer

questions live during the final ~10 minutes of this webinar.

• For any remaining or follow-up questions, Mei-Yu may engage

after the webinar: mwang7@psc.edu

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline

8

● Two examples of popular open LLMs: Llama & Gemma

○ Llama (Meta)

○ Gemma (Google)

● Examples of techniques for fine-tuning models with limited resources
○ Parameter-efficient fine-tuning (PEFT)

○ Quantization

○ Fully Sharded Data Parallel

● Brief Overview of the Bridges-2 GPU partition
○ Type of GPU nodes/partitions

○ Batch job/interactive mode/OnDemand

○ How to set up the environment

● Demo : performing model finetuning/inference with Llama-2 7B and Llama-3 8B

(optionally Gemma 7B) using LoRA.

● Conclusion

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline

9

● Two examples of popular open LLMs: Llama & Gemma

○ Llama (Meta)

○ Gemma (Google)

● Examples of techniques for doing Parameter-efficient fine-tuning
○ LoRA

○ Quantization

○ Fully Sharded Data Parallel

● Brief Overview of the Bridges-2 GPU partition
○ Type of GPU nodes/partitions

○ Batch job/interactive mode/OnDemand

○ How to set up the environment

● Demo : Finetuning/inferencing Gemma 7B & Llama-3 8B

● Conclusion

© Pittsburgh Supercomputing Center, All Rights Reserved

Llama

Name Release Date Number of Parameters Context
Length

Corpus
size

Commercial
viability

LLaMA-2 July 18, 2023
● 7B/7B-chat
● 13B/13B-chat
● 70B/70B-chat

2049 2T Yes

LLaMA-3 April 18, 2024
● 8B/8B-Instruct
● 70B/70B-Instruct 8912 15T Yes

10

● Llama (Large Language Model Meta AI) is a family of autoregressive large language models
released by Meta AI starting in February 2023.

● Other variants
○ Code Llama: a collection of code-specialized versions of

Llama 2 in three flavors (base model, Python specialist,
and instruct tuned).

○ Llama Guard: a 7B Llama 2 safeguard model for
classifying LLM inputs and responses.

© Pittsburgh Supercomputing Center, All Rights Reserved

Llama 3 Performance

11

Source: https://llama.meta.com/llama3See https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md#benchmarks
for benchmark results.

https://llama.meta.com/llama3
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md#benchmarks

© Pittsburgh Supercomputing Center, All Rights Reserved

Resources for getting started with Llama

12

● Website
○ https://llama.meta.com/

● Ways to download the model:
○ Meta: https://llama.meta.com/llama-downloads
○ Hugging face: https://huggingface.co/meta-llama
○ Kaggle: https://www.kaggle.com/models/metaresearch/llama-3,

https://www.kaggle.com/models/metaresearch/llama-2
● Github

○ Meta-llama/llama-recipes
■ https://github.com/meta-llama/llama-recipes
■ examples to get started using Llama for fine-tuning, inference…etc.

○ Meta-llama/llama
■ https://github.com/meta-llama/llama
■ Provide a script for downloading the model weights and a minimal example to load models

and run inference.
○ Torchtune

■ https://github.com/pytorch/torchtune

https://llama.meta.com/
https://llama.meta.com/llama-downloads
https://huggingface.co/meta-llama
https://www.kaggle.com/models/metaresearch/llama-3
https://www.kaggle.com/models/metaresearch/llama-2
https://github.com/meta-llama/llama-recipes
https://github.com/meta-llama/llama
https://github.com/pytorch/torchtune

© Pittsburgh Supercomputing Center, All Rights Reserved

Gemma

Name Release Date Number of Parameters Context
Length

Corpus
size

Commercial
viability

Gemma February 21, 2024
● 2B/2B-it (v1.0, v1.1)
● 7B/7B-it (v1.0, v1.1) 8192 6T Yes

13

● Gemma is a family of lightweight, state-of-the-art
open models built from the same research and
technology used to create the Gemini models,
developed by Google DeepMind and other teams
across Google.

● Other variants:
○ CodeGemma: a collection of code-specialized versions of Gemma.
○ PaliGemma: an open vision-language model built with open components such as the SigLIP

vision model and the Gemma language model.

○ RecurrentGemma: an open model based on Griffin, a hybrid model that mixes gated linear
recurrences with local sliding window attention.

© Pittsburgh Supercomputing Center, All Rights Reserved

Gemma Performance

14

Source: Gemma technical report
https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

© Pittsburgh Supercomputing Center, All Rights Reserved

Resources for getting started with Gemma

15

● Website: https://ai.google.dev/gemma

● Ways to download the model:

○ Kaggle: https://www.kaggle.com/models/google/gemma

○ Hugging Face: https://huggingface.co/google

● Technical report: https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

● Github:

○ google-deepmind/gemma:

■ https://github.com/google-deepmind/gemma

■ examples to get started using Gemma for fine-tuning, inference…etc.

○ For tutorials, reference implementations in various ML frameworks:

■ https://github.com/google/generative-ai-docs/tree/main/site/en/gemma/docs

○ Torchtune

■ https://github.com/pytorch/torchtune

https://ai.google.dev/gemma
https://www.kaggle.com/models/google/gemma
https://huggingface.co/google
https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf
https://github.com/google-deepmind/gemma
https://github.com/google/generative-ai-docs/tree/main/site/en/gemma/docs
https://github.com/pytorch/torchtune

© Pittsburgh Supercomputing Center, All Rights Reserved

Examples of scientific applications with Llama

16

● Fine Tuned with domain specific knowledge:

○ Medical specific LLMs: finetuned with medical paper (arXiv:2304.14454), medical

conversational model (arXiv:2304.08247) , clinical data: (arxiv:2307.03042), Medical application:

(arxiv:2402.12749)

○ Biochemistry: (arxiv:2306.08018)

○ Finance: FinLlama (arxiv:2403.12285)

● Retrieval Augmented Generation (RAG)

○ Medical: Disease prediction system (arxiv:2402.00746), PMC-LLaMA (arxiv:2304.14454)

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline

17

● Two examples of popular open-source LLMs: Gemma & Llama

○ Gemma

○ Llama-3/Llama-2

● Examples of techniques for fine-tuning models with limited resources
○ Parameter-efficient fine-tuning (PEFT)

○ Quantization

○ Fully Sharded Data Parallel

● Brief Overview of the Bridges-2 GPU partition
○ Type of GPU nodes/partitions

○ Batch job/interactive mode/OnDemand

○ How to set up the environment

● Demo : Finetuning/inferencing Gemma 7B & Llama-3 8B

● Conclusion

© Pittsburgh Supercomputing Center, All Rights Reserved

Parameter-efficient fine-tuning (PEFT)

18

● In traditional fine-tuning, all model parameters are updated

to tailor the outputs to the specific task. It is also possible to

freeze some layers and leave the rests trainable.

● In contrast, when fine-tuning with PEFT (Parameter-Efficient

Fine-Tuning), the base model weights remain frozen, and only

the adapter modules are trained. Consequently, the number

of trainable parameters could be drastically reduced to less

than 1%.

Hu et al., (2021) “LoRA: Low-Rank Adaptation of Large
Language Models” https://arxiv.org/abs/2106.09685

● Examples:

○ LoRA
○ P-tuning
○ Prefix tuning

https://arxiv.org/abs/2106.09685

© Pittsburgh Supercomputing Center, All Rights Reserved

Quantization

19

● Quantization involves representing model weights and activations, typically 32-bit floating numbers,

with lower precision data such as 8-bit int or 4-bit int.

● The benefits of quantization include smaller model sizes, faster fine-tuning, and faster

inference—particularly beneficial in resource-constrained environments.

● However, the tradeoff is a reduction in model quality due to the loss of precision.

● Example library:

○ BitsAndBytes

○ Quanto

○ TorchAO

https://github.com/TimDettmers/bitsandbytes
https://github.com/huggingface/quanto
https://github.com/pytorch/ao

© Pittsburgh Supercomputing Center, All Rights Reserved

Fully Sharded Data Parallel (FSDP)

20

● Unlike traditional data-parallel, which maintains a per-GPU copy of a model’s parameters, gradients

and optimizer states, FSDP shards all of these states across data-parallel workers and can

optionally offload the sharded model parameters to CPUs.

● It is available in PyTorch and is Integrated with Hugging Face Accelerate

● Paper: https://arxiv.org/pdf/2304.11277

source:
https://engineering.fb.com/2021/
07/15/open-source/fsdp/

https://arxiv.org/pdf/2304.11277
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline

21

● Two examples of popular open-source LLMs: Gemma & Llama

○ Gemma

○ Llama-3/Llama-2

● Examples of techniques for fine-tuning with limited resources
○ Parameter-efficient fine-tuning (PEFT)

○ Quantization

○ Fully Sharded Data Parallel

● Brief Overview of the Bridges-2 GPU partition
○ Type of GPU nodes/partitions

○ Batch job/interactive mode/OnDemand

○ How to set up the environment

● Demo : Finetuning/inferencing Gemma 7B & Llama-3 8B

● Conclusion

© Pittsburgh Supercomputing Center, All Rights Reserved

Bridges-2 GPU and GPU-shared partitions

Node Type Total # of nodes # GPUs per
node

Memory per GPU RAM per node

V100-32

24 Tesla
V100-32GB SXM2 8 32 GB 512 GB

1 DGX-2 16 32 GB 1.5 TB

V100-16 8 V100-16GB 8 16 GB 192 GB

22

● See Bridges-2 user guide for details:
https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions

● Partition:
○ The GPU-shared partition

The GPU-shared partition is for jobs that will use part of one GPU node (up to 4 GPUs, maximum runtime: 48 hours).

○ The GPU partition
The GPU partition is for jobs that will use one or more entire GPU nodes (up to 64 GPUs, maximum runtime: 48 hours)

● GPU type:

https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions

© Pittsburgh Supercomputing Center, All Rights Reserved

How to run jobs on Bridges-2

23

● See Bridges-2 user guide for details:
https://www.psc.edu/resources/bridges-2/user-guide/#running-jobs

● Batch Mode (https://www.psc.edu/resources/bridges-2/user-guide/#batch-jobs)

Using slurm scripts to submit jobs to the queue so that they will run as soon as resources are available.

● Interactive Sessions (https://www.psc.edu/resources/bridges-2/user-guide/#interactive-sessions)

Where you type commands and receive output back to your screen as the commands complete. Best

for debugging and short test jobs (maximum requested time is up to 8 hours).

● OnDemand (https://www.psc.edu/resources/bridges-2/user-guide/#ondemand)

A web browser interface that allows you to run interactively, or create, edit and submit batch jobs and

also provides a graphical interface to tools like RStudio, Jupyter notebooks, and IJulia

https://www.psc.edu/resources/bridges-2/user-guide/#running-jobs
https://www.psc.edu/resources/bridges-2/user-guide/#batch-jobs
https://www.psc.edu/resources/bridges-2/user-guide/#interactive-sessions
https://www.psc.edu/resources/bridges-2/user-guide/#ondemand

© Pittsburgh Supercomputing Center, All Rights Reserved

How to set up the environments for AI/ML applications

24

● See Bridges-2 user guide for details:

● PSC Pre-Built AI module (https://www.psc.edu/resources/bridges-2/user-guide/#ai-environments)
 Pre-built AI environment (Anaconda-based) including several popular AI/ML/BD packages.

● NVIDIA NGC containers (https://www.psc.edu/resources/software/singularity/)
Containers developed by NVIDIA that are performance-optimized and ready to deploy for AI/ML applications
on GPU-powered systems.

● Create your own Conda environment/custom AI environment
https://www.psc.edu/resources/bridges-2/user-guide/#using-a-conda-module-environment

https://www.psc.edu/resources/bridges-2/user-guide/#ai-environments

● Create your own Singularity container
(https://www.psc.edu/resources/bridges-2/user-guide/#using-singularity-containers)

https://www.psc.edu/resources/bridges-2/user-guide/#ai-environments
https://www.psc.edu/resources/software/singularity/
https://www.psc.edu/resources/bridges-2/user-guide/#using-a-conda-module-environment
https://www.psc.edu/resources/bridges-2/user-guide/#ai-environments
https://www.psc.edu/resources/bridges-2/user-guide/#using-singularity-containers)

© Pittsburgh Supercomputing Center, All Rights Reserved

Ways to run deep learning jobs

25

© Pittsburgh Supercomputing Center, All Rights Reserved

Interactive Sessions

26

● Commands to start interactive sessions:
○ For GPU-shared partition:

interact --partition GPU-shared --gres=gpu:type:n -t time

■ example: interact -p GPU-shared --gres=gpu:v100:2 -t 2:00:00

○ For GPU partition:

interact --partition GPU --gres=gpu:type:n –N x -t time

■ example: interact -p GPU --gres=gpu:v100-32:8 -N 1 -t 1:00:00

● Rules:
○ --partition: GPU-shared or GPU
○ --gres=gpu:type:n

■ type: v100-32 or v100-16. Use v100 if node type is not specified.
■ n: number of GPUs per node. For GPU partition, n must be either 8 or 16 for DGX-2. For GPU-shared

partition, n should be less than 4.
○ -t:requested walltime, in the format HH:MM:SS
○ -N/–-nodes: number of nodes

● See https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions for more details

https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions

© Pittsburgh Supercomputing Center, All Rights Reserved

Batch mode

27

Rules:
Similar to interactive sessions, but
use --gpus=type:n instead to
specify total number of GPUs for n
and node types.

● To submit slurm script, type sbatch
name_of_your_script

● See
https://www.psc.edu/resources/bridge
s-2/user-guide/#batch-jobs about
sbatch commands and options

● See
https://www.psc.edu/resources/brid
ges-2/user-guide/#gpu-partitions for
more details about GPU batch jobs.

Example slurm script (NGC container)

https://www.psc.edu/resources/bridges-2/user-guide/#batch-jobs
https://www.psc.edu/resources/bridges-2/user-guide/#batch-jobs
https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions
https://www.psc.edu/resources/bridges-2/user-guide/#gpu-partitions

© Pittsburgh Supercomputing Center, All Rights Reserved

Using OnDemand to run Jupyter notebooks

28

● Open

https://ondemand.bridges2.psc.edu

via a web browser. Enter your PSC

username and password.

● Once logged in, click on “Jupyter

Notebook: Bridges2” or go to

“Interactive Apps -> Jupyter Notebook”

https://ondemand.bridges2.psc.edu/

© Pittsburgh Supercomputing Center, All Rights Reserved

OnDemand

29

● Enter the information about your job, such

as requested time, number of nodes,

partition, and specify the number of GPUs

using the “Extra Slurm Args” column

(similar to typical batch job).

● Click “Launch” to submit the job

© Pittsburgh Supercomputing Center, All Rights Reserved

OnDemand

30

● Once the job starts, click the “Connect to Jupyter” to launch the Jupyter

notebook interface

© Pittsburgh Supercomputing Center, All Rights Reserved

OnDemand

31

● You can use NGC containers for Pytorch and Tensorflow (latest) by selecting them from the

“Kernel -> Change kernel -> NGC PyTorch/NGC TensorFlow”

● To use custom conda environment/containers, please check the Bridges-2 User Guide:
https://www.psc.edu/resources/bridges-2/user-guide/#custom-env

https://www.psc.edu/resources/bridges-2/user-guide/#custom-env

© Pittsburgh Supercomputing Center, All Rights Reserved

Demo:

32

Performing model finetuning/inference for
Llama 2-7B, Llama 3-8B and Gemma 7B with
LoRA
See
https://github.com/pscedu/bridges2-examples/tree/main/bridges2-llm-examples
for detailed instructions and scripts/Jupyter notebooks

https://github.com/pscedu/bridges2-examples/tree/main/bridges2-llm-examples

© Pittsburgh Supercomputing Center, All Rights Reserved

Summary

33

● The recent release of open LLMs such as Llama and Gemma provides a big step towards

democratizing LLM usage.

● There are various techniques for fine-tuning LLMs with limited computational resources, such

various Parameter-efficient fine-tuning (PEFT) techniques, quantization, and fully shared data

parallel methods.

● For Bridges-2 GPU partition, it is best to utilized the V100 32GB GPUs to work with LLMs. Bridges-2

also provide various way to run jobs, such as batch/interactive mode and OnDemand web

interface to easily set up and run Jupyter notebooks.

● We provide examples and instructions for doing model finetuning/inference with Llama/Gemma

on Bridges-2: https://github.com/pscedu/bridges2-examples/tree/main/bridges2-llm-examples

● Please email help@psc.edu with any general questions regarding Bridges-2. You can also reach

me by email mwang7@psc.edu.

https://github.com/pscedu/bridges2-examples/tree/main/bridges2-llm-examples

