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Purpose of this talk

Now that you know how to do some real parallel programming, 
you may wonder how much you donôt know.  With your newly 
informed perspective we will take a look at the parallel software 
landscape so that you can see how much of it you are equipped 
to traverse.



How parallel is a code?

¸ Parallel performance is defined in terms of scalability

Strong Scalability

Can we get faster for a

given problem size?

Weak Scalability

Can we maintain 

runtime as we scale up 

the problem?



Weak vs. Strong scaling

More

Processors

More

Processors

Weak Scaling

Strong Scaling

More accurate results

Faster results

(Tornado on way!)



Your Scaling Enemy: Amdahlôs Law

How many processors can we 
really use?

Letôs say we have a legacy 
code such that is it only 
feasible to convert half of 
the heavily used routines 
to parallel:



Amdahlôs Law

If we run this on a parallel  
machine with five processors:

Our code now takes about 60s. 
We have sped it up by about 
40%.

 Letôs say we use a thousand 
processors:

We have now sped our code by 
about a factor of two.  Is this a 
big enough win?



Amdahlôs Law
¸ If there is x% of serial component, speedup 

cannot be better than 100/x.

¸ If you decompose a problem 
into many parts, then the parallel 
time cannot be less than the 
largest of the parts.

¸ If the critical path through a 
computation is T, you cannot 
complete in less time than T,
no matter how many processors you use .

¸ Amdahl's law used to be cited by the knowledgeable as a limitation.

¸ These days it is mostly raised by the uninformed.

¸ Massive scaling is commonplace:
ï Science Literature

ï Web (map reduce everywhere)

ï Data Centers (Spark, etc.)

ï Machine Learning (GPUs and others)



Need to write some scalable code?

First Choice:

Pick a language - or maybe a library, or paradigm 
(whatever that is)?



Languages: Pick One (Hint: MPI  + ?)

Parallel Programming environments since the 90ôs

ABCPL

ACE 

ACT++ 

Active messages 

Adl

Adsmith

ADDAP

AFAPI

ALWAN

AM

AMDC

AppLeS

Amoeba 

ARTS

Athapascan-0b

Aurora

Automap

bb_threads 

Blaze

BSP

BlockComm 

C*. 

"C* in C 

C** 

CarlOS

Cashmere

C4

CC++ 

Chu

Charlotte

Charm

Charm++

Cid

Cilk

CM-Fortran 

Converse

Code

COOL

CORRELATE 

CPS 

CRL

CSP

Cthreads 

CUMULVS

DAGGER

DAPPLE 

Data Parallel C 

DC++ 

DCE++ 

DDD

DICE.

DIPC 

DOLIB

DOME 

DOSMOS.

DRL

DSM-Threads

Ease .

ECO

Eiffel 

Eilean 

Emerald 

EPL 

Excalibur

Express

Falcon

Filaments

FM

FLASH

The FORCE 

Fork

Fortran-M

FX

GA 

GAMMA 

Glenda

GLU

GUARD

HAsL.

Haskell 

HPC++

JAVAR.

HORUS

HPC

IMPACT

ISIS.

JAVAR

JADE 

Java RMI

javaPG

JavaSpace

JIDL

Joyce

Khoros

Karma 

KOAN/Fortran-S

LAM

Lilac 

Linda

JADA 

WWWinda

ISETL-Linda 

ParLin 

Eilean 

P4-Linda

Glenda 

POSYBL

Objective-Linda

LiPS

Locust

Lparx

Lucid

Maisie 

Manifold

Mentat

Legion

Meta Chaos 

Midway

Millipede

CparPar

Mirage

MpC

MOSIX

Modula-P

Modula-2*

Multipol

MPI

MPC++

Munin

Nano-Threads

NESL

NetClasses++ 

Nexus

Nimrod

NOW

Objective Linda

Occam

Omega

OpenMP

Orca

OOF90

P++

P3L

p4-Linda

Pablo

PADE

PADRE 

Panda 

Papers 

AFAPI.

 Para++

Paradigm

Parafrase2 

Paralation 

Parallel-C++ 

Parallaxis

ParC 

ParLib++

ParLin

Parmacs

Parti

pC

pC++

PCN

PCP: 

PH

PEACE

PCU

PET

PETSc

PENNY

Phosphorus 

POET.

Polaris 

POOMA

POOL-T

PRESTO

P-RIO 

Prospero

Proteus 

QPC++ 

PVM

PSI

PSDM

Quake

Quark

Quick Threads

Sage++

SCANDAL

 SAM

pC++ 

SCHEDULE

SciTL 

POET 

SDDA.

SHMEM 

SIMPLE

Sina 

SISAL.

distributed smalltalk 

SMI.

SONiC

Split-C.

SR

Sthreads 

Strand.

SUIF.

Synergy

Telegrphos

SuperPascal 

TCGMSG.

Threads.h++.

TreadMarks

TRAPPER

uC++ 

UNITY 

UC 

V 

ViC* 

Visifold V-NUS 

VPE

Win32 threads 

WinPar 

WWWinda 

 XENOOPS  

XPC

Zounds

ZPL

Alternative Approach

ñWhen all you have is a hammer, 

everything looks like a nail.ò



Paradigm?
¸ Message Passing

ïMPI

¸ Data Parallel

ïFortran90

¸ Threads

ïOpenMP, OpenACC, CUDA

¸ PGAS

ïUPC, Coarray Fortran

¸ Frameworks

ïCharm++

¸ Hybrid

ïMPI + OpenMP



Message Passing:  MPI in particular

Pros

¸ Has been around a longtime (~20 years inc. PVM)

¸ Dominant

¸ Will be around a longtime (on all new platforms/roadmaps)

¸ Lots of libraries

¸ Lots of algorithms

¸ Very scalable (100K+ cores right now)

¸ Portable

¸ Works with hybrid models

¸ We teach MPI in two days also

¸ This is the only route to massive scalability today!

Cons

¸ Lower level means more detail for the coder

¸ Debugging requires more attention to detail

¸ Domain decomposition and memory management must be explicit

¸ Students leaving our MPI workshop may face months of work before they are able to actually run their 
production code

¸ Development usually requires a ñstart from scratchò approach



Data Parallel ï Fortran90

Computation in FORTRAN 90



Data Parallel

Communication in FORTRAN 90



Data Parallel
Pros

¸ So simple you just learned some of it

¸ éor already knew it from using Fortran

¸ Easy to debug

Cons

¸ If your code doesnôt totally, completely express itself as nice array operations, you are 
left without a flexible alternative.

ï Image processing: Great

ï Irregular meshes: Not so great



Threads in OpenMP

Fortran:

  !$ omp parallel do

  do i  = 1, n 

   a( i ) = b( i ) + c( i ) 

  enddo  

C/C++:

 #pragma omp parallel for

 for( i =1; i <=n; i ++) 

   a[ i ] = b[ i ] + c[ i ]; 



subroutine saxpy (n, a, x, y)
  real :: x(:), y(:), a
  integer :: n, i
!$ acc  kernels
  do i =1,n

   y( i ) = a*x( i )+y( i )
  enddo
!$ acc  end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy (2**20, 2.0, x_d , y_d )
...

void saxpy(int n, 

           float a, 

           float *x, 

           float *restrict y)

{

#pragma acc kernels

  for  (int i = 0; i  < n; ++i)

    y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

Threads in OpenACC

SAXPY in C SAXPY in Fortran



Threads without directives: CUDA
// Host code

int  main( int  argc , char** argv )

{

 // Allocate input vectors in host memory

    h_A = (float*) malloc (size);

    if ( h_A == 0) Cleanup();

    h_B = (float*) malloc (size);

    if ( h_B == 0) Cleanup();

    h_C = (float*) malloc (size);

    if ( h_C == 0) Cleanup();

    

    // Initialize input vectors

    Init( h_A, N);

    Init( h_B, N);

    // Allocate vectors in device memory

    cudaMalloc ((void**)& d_A, size);

    cudaMalloc ((void**)& d_B, size);

    cudaMalloc ((void**)& d_C, size);

// Copy vectors to device memory

    cudaMemcpy( d_A, h_A, size, cudaMemcpyHostToDevice );

    cudaMemcpy( d_B, h_B, size, cudaMemcpyHostToDevice );    

 // Run kernel

    int  threadsPerBlock  = 256;

    int  blocksPerGrid  = (N + threadsPerBlock  -  1) / threadsPerBlock ;

    VecAdd<<<blocksPerGrid , threadsPerBlock >>>( d_A, d_B, d_C, N);

    // Copy results from device memory to host memory

 cudaMemcpy( h_C, d_C, size, cudaMemcpyDeviceToHost );

    

// GPU Code

__global__ void VecAdd( const  float* A, const  float* B, float* C, int  N)

{

    int  i  = blockDim.x  * blockIdx.x  + threadIdx.x ;

    if ( i  < N)

        C[ i ] = A[ i ] + B[ i ];

}



Threads
Splits up tasks (as opposed to arrays in data parallel) such as 

loops amongst separate processors.

Do communication as a side effect of data loop distribution. Not 
an big issue on shared memory machines.  Impossible on 
distributed memory.

Common Implementations:

 pthreads (original Unix standard)

 OpenMP

 OpenACC

 OpenCL (Khronos Group)

 DirectCompute (Microsoft)

 Very C++ oriented:

ï C++ AMP (MS/AMD)

ï TBB (Intel C++ template library)

ï Cilk (Intel, now in a gcc branch)

 

Pros:

1. Doesnôt perturb data structures, so can be 
incrementally added to existing serial 
codes.

2. Becoming fairly standard for compilers.

Cons:

1. Serial code left behind will be hit by 
Amdahlôs Law

2. Forget about taking this to the next level of 
scalability.  You can not do this on MPPs at 
the machine wide level.



PGAS with Co-Array Fortran
(now Fortran 2008)

Co-array synchronization is at the heart of the typical Co-Array Fortran program.  
Here is how to exchange an array with your north and south neighbors:

COMMON/XCTILB4/ B(N,4)[*] 

SAVE /XCTILB4/ 

CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) )

B(:,3) = B(:,1)[IMG_S]

B(:,4) = B(:,2)[IMG_N]

CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 

Lots more examples at co-array.org.



Partitioned Global Address Space: (PGAS)

Multiple threads share at least a part of a 
global address space.

Can access local and remote data with 
same mechanisms.

Can distinguish between local and 
remote data with some sort of typing.

Variants:

 Co-Array Fortran (CAF)

 Fortran 2008

 Unified Parallel C (UPC)

Pros:

1. Looks like SMP on a distributed 
memory machine.

2. Currently translates code into 
an underlying message passing 
version for efficiency.

Cons:

1. Depends on (2) to be efficient.

2. Can easily write lots of 
expensive remote memory 
access without paying attention.

3. Currently immature.



Frameworks

Charm++

ï Object-oriented parallel extension 
to C++

ï Run-time engine allows work to be 
ñscheduledò on the computer.

ï Highly-dynamic, extreme load-
balancing capabilities.

ï Completely asynchronous.

ï NAMD, a very popular MD 
simulation engine is written in 
Charm++

One of the more experimental approaches that was gaining some traction 

was to use a parallel framework that handle the load balancing and 

messaging while you ñfill inò the science.  Charm++ is the most popular 

example:



Frameworks (Newsflash!)

Å After a long time with no positive reports in this space, I can definitely say that the 

Machine Learning (Artificial Intelligence) community has embraced this in an 

effective manner.

Å The most popular frameworks/toolkits/packages used for deep learning (aka 

Neural Nets) are very much in this philosophy.

Å PyTorch, TensorFlow and others use a high level descriptive approach to arrange 

other components, often themselves a higher level layer in Python or whatnot, to 

invoke libraries written in C++ (and actually Fortran is hidden in there more often 

than those groups would believe in the form of BLAS type libraries).

Å These frameworks use threads, GPUs and distributed nodes very heavily.

Å You could say that the math library nature of this work makes this unique, but the 

innovation in arranging these codeflows is not at all rote.



Some Alternatives
¸ OpenCL (Khronos Group)

ïEveryone supports, but not as a primary focus

ï Intel ï OpenMP

ïNVIDIA ï CUDA, OpenACC

ïAMD ï now HIP

ïKhronos has now brough out SYCL

¸ Fortran 2008+ threads (sophisticated but not consistently implemented)

¸ C++11 threads are basic (no loops) but better than POSIX

¸ Python threads are fake (due to Global Interpreter Lock)

¸ DirectCompute (Microsoft) is not HPC oriented

¸ C++ AMP (MS/AMD)

¸ TBB (Intel C++ template library)

¸ Cilk (Intel, now in a gcc branch)

¸ Intel oneAPI (Includes DPC++ and extends SYCL)

¸ Kokkos



Lampson's Law
Butler Lampson famously said "All problems in computer science can be solved by another level of indirection."

The oft cited corollary to this is, "...except for the problem of too many layers of indirection."

This has become a common theme with modern, deep, fragile software stacks.

cmake: makes makefiles

 to solve problem of different build environments

Jupyter notebooks: layer psudo-html and python on javascript

 to solve lack of standard interactive GUI (kind of like Flash did for the Web)

pip install: fetches multiple levels of dependencies (even with a -r requirements.txt file)

 to solve Python dependency hell

 but it only made it worse so

  Anaconda tries to help

   until something is missing...

Containers try to sweep the whole mess under the carpet (and then roll it up)

 until something is missing...

The list goes on....



Parallel Computing Lampson's Law

Parallel computing isn't immune to Lampson's Law either. The failure of OpenACC and OpenMP to merge, coupled with a number of non-
standard, industry supported wannabees has led to several (of course) proposed layers on top of the standardized ones...

I mentioned them briefly in our earlier talks, but this is a good time to mention it again. I'll paraphrase heavily from a decent summary podcase 
that is mentioned here:

https://www.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-
aurora/

Two of those are Kokkos and RAJA, which are portability layers from national labs. These two sit one level higher in the abstraction over the 
vendor-specific programming models. Another national lab team is using RAJA to enable their performance portability along with a related 
project, Umpire, for memory management.

RAJA itself is a project thatôs focused on loop execution, and it does not include memory management. RAJA applications either can use the 
underlying backendôs memory management model directly or they use this related project, Umpire. Umpire is another abstraction layer that 
sits on top of these other programming models, providing a single interface to do memory management such as mem copies and allocations. 
This design is nice because it offers a separation of concerns. RAJA is very much focused on executing your kernel on the GPU while Umpire 
is just focused on memory management and moving memory around.

RAJA is being developed to run on GPUs using DPC++. That is part of Intelôs oneAPI, and itôs an implementation of the SYCL programming 
model. SYCL is an open programming standard thatôs focused on heterogeneous C++ programming. DPC++ is kind of an overloaded term. It 
refers to the name of Intelôs implementation of the SYCL standard, with some important extensions that they made to the language.

If this seems confusing and redundant, you aren't wrong. Beware any magic bullet that hasn't proven itself, regardless of the enthusiasm.

https://www.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-aurora/
https://www.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-aurora/


Hybrid Coding

¸ Problem: given the engineering constraint of a machine made up of a large collection of multi-
core processors, how do we use message passing at the wide level while still taking advantage 
of the local shared memory?

¸ Similar Problem: given a large machine with accelerators on each node (GPU or MIC), how do 
we exploit this architecture?

¸ Solution: Hybrid Coding.  Technically, this could be any mix of paradigms.  Currently, this is 
likely MPI with a directive based approach mixed in.

¸ At the node level, you may find OpenMP or OpenACC directives most usable.

¸ But, one must design the MPI layer first, and them apply the OpenMP/ACC code at the node 
level.  The reverse is rarely a viable option.



Counterintuitive:
MPI vs. OpenMP on a node

It might seem obvious that, since OpenMP is created to deal with SMP code, you 
would ideally like to use that at the node level, even if you use MPI for big scalability 
across an MPP.

Very often, it turns out that the MPI-to-the-core (pun completely intended) version is 
faster.  This indeed seems odd.

The answer is that after going to the trouble of doing a proper MPI data 
decomposition, you have also greatly aided the caching mechanism (by moving 
concurrently accessed data into different regions of memory).  Hence the win.

However, if you are only interested in node-level scaling, this would be a lot of 
effort.



Parallel Programming in a Nutshell
Assuming you just took our workshop

¸ You have to spread something out.

¸ These can theoretically be many types of abstractions: work, threads, tasks, 
processes, data,é

¸ But what they will be is your data.  And then you will use MPI, and possibly 
OpenMP/ACC, to operate on that data.



Domain Decomposition Done Well: 
Load Balanced

¸ A parallel algorithm can only be as fast as the slowest chunk.

ï Might be dynamic (hurricane moving up coast)

¸ Communication will take time

ï Usually orders of magnitude difference between registers, 
cache, memory, network/remote memory, disk

ï Data locality and ñneighborly-nessò matters very much.

Is Texas vs. New Jersey a good idea?



In Conclusioné

OpenMP

OpenACC

MPI



MPI 3.0 +X  (MPI 3.0 specifically addresses exascale computing issues)

  PGAS (partitioned global address space)

  CAF (now in Fortran 2008!),UPC

   APGAS

   X10, Chapel

    Frameworks

    Charm++

     Functional

     Haskell

The Future and where you fit.
While the need is great, there is only a short list of serious contenders for 2020 exascale computing usability.



Of course you should. Here are a few reassuring words that software at 
exascale is not an afterthought, followed by more than a few application 

examples.

Do you really care about software?



ECP application domains.



SW engineering
Å Productivity tools.

Å Models, processes.

Libraries
Å Solvers, etc.

Å Interoperable.

Frameworks & tools
Å Doc generators.

Å Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
Å Reacting flow, etc.

Å Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF,  

NERSC, OLCF, also Linux, Mac OS X

xSDK Version 0.4.0: December 2018 (even better today)

Multiphysics Application C

Application B

Impact: Improved code quality,  
usability, access, sustainability

Foundation for work on  
performance portability, deeper  

levels of package interoperability

Each xSDK member package uses or  

can be used with one or more xSDK  

packages, and the connecting interface  

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More  

libraries

PFLOTRAN

More domain  

components

MFEM

SUNDIALS

HDF5

BLAS

More  
external  
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
Å17 math libraries
Å2 domain

components

Å16 mandatory  
xSDK community  
policies

ÅSpack xSDK
installer

MAGMA
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