Outro to
Parallel Computing

“

John Urbanic

Parallel Computing Scientist
Pittsburgh Supercomputing Center

Copyright 2023

Outro To Parallel Computing

John Urbanic
Pittsburgh Supercomputing Center
Parallel Computing Scientist

Purpose of this talk

Now that you know how to do some real parallel programming,
you may wonder how much you d o nknow. With your newly
informed perspective we will take a look at the parallel software
landscape so that you can see how much of it you are equipped

to traverse.

How parallel is a code?

Parallel performance is defined in terms of scalability

Strong Scalability
Can we get faster for a
given problem size?

Weak Scalability

Can we maintain
runtime as we scale up
the problem?

Weak vs. Strong scaling

Weak Scaling

More accurate results

Strong Scaling

sults

Faster re

=
>
©
=
c
o
o
o
@®
c
S
T
N—r

Your Scaling Enemy: Arndail’s iaw

How many processors can we

really use? b5

ok Serial

Let 60s say we have [a | egacy

code such that is it only
feasible to convert half of S Parallel
the heavily used routines
to parallel:

o Serial

w

Armncdakls Law

If we run this on a parallel
machine with five processors:

Our code now takes about 60s.
We have sped it up by about
409%o.

Let 0s say WwWe use
Processors:

We have now sped our code by
about a factor of two. Is this a
big enough win?

25s

25s

t hous aun|d

Amdahl 0s

If there is x% of serial component, speedup
cannot be better than 100/x.

o
=
=
=5
& 10.00
2
o
[
o
(=

If you decompose a problem

into many parts, then the parallel
time cannot be less than the
largest of the parts.

2 ‘ 32 64 128
If the critical path through a Processors
computation is T, you cannot
complete in less time than T,
no matter how many processors you use .

256

Fraction of
Serial Code

o
=

o o oo 0
nnor W N R O
w

o O

o

Amdahl's law used to be cited by the knowledgeable as a limitation.
These days it is mostly raised by the uninformed.

Massive scaling is commonplace:
i Science Literature

Web (map reduce everywhere)

Data Centers (Spark, etc.)

i
i
:
i Machine Learning (GPUs and others)

Need to write some scalable code?

First Choice:

Pick a language - or maybe a library, or paradigm
(whatever that 1s)?

Languages: Pick ONne g i+

Parall el Programming environments since the 9

Alternative Approach

NWhen all you | S
everything | | 1 ke

Paradigm?

Message Passing

I MPI
Data Parallel

I Fortran90
Threads

I OpenMP, OpenACC, CUDA
PGAS

I UPC, Coarray Fortran
Frameworks

I Charm++
Hybrid

I MPI + OpenMP

Message Passing: MPIin particular

Pros

Has been around a longtime (~20 years inc. PVM)
Dominant

Will be around a longtime (on all new platforms/roadmaps)
Lots of libraries

Lots of algorithms

Very scalable (L00K+ cores right now)

Portable

Works with hybrid models

We teach MPI in two days also

Cons

Lower level means more detail for the coder
Debugging requires more attention to detail
Domain decomposition and memory management must be explicit

Students leaving our MPl workshop may face months of work before they are able to actually run their
production code

Data Paralle] -

Cormoutaiiorn in FORTRAN 90

Niu|u|d
Qiwiv| T
Kiw|v| T
Kiw|v| T

P = Processor

Forirando

Real Afd,4), Bd, 4y, C(d,.4)

A=2.0

FORALL (I=1:4, J=1:4)
B(I, J)=I+J

C=At+H

c= A + B
4 |5 |6 |7 2|22 |2 2|34 |5
5|6|7|8 2|2 |2 |2 3|4|5|6
6|7|8|9 2|2 |2 |2 4 |5 |16 |7
7|89 110 (2|2 |2 |2 5|6 |7|8

—

Dzta Parallel

Cormruniczaiion in FORTRAN 90

Qioigw
Qiwihw
Kioiow
IRl

P = FProcessor

M OI| | W
Wi U]k
| =d) Gh[LN
tn| 9] ~| S

Real Acd.4). B¢d,4)
FORALL (I=1:4. J=1:4)

B(I. T)y=T+T
A—CSHIFT (B. DIM=2,1)

CSHIFT (B.2,1)

Nk WN
S]] W
wl[O] (1]
0| ~1| G| N

Data Parallel

Pros
So simple you just learned some of it

eor already knew it from using Fortran
Easy to debug

Cons

| f your code doesnoé6t totally, completely expre
left without a flexible alternative.

I Image processing: Great
I Irregular meshes: Not so great

Threads in OpenMP

Fortran:
I$ omp parallel do
doi =1,n
a(i)=b(i)+c(i)
enddo
C/C++:

#pragma omp parallel for
for(i =1; i<=n; |++)
a[i]=b[i]+c[i];

Threads in OpenACC

SAXPY In C SAXPY In Fortran

Threads without directives: CUDA

/I Host code 11 GPU Code
int main(int argc , char** argv)

{ . . __global__ void VecAdd(const float* A, const float* B, float* C, int N)
/I Allocate input vectors in host memory {
- * a)
h A =(floa) ~ malioc (size); int i = blockDimx * blockldx.x + threadldxx |
if (h_A ==0) Cleanup(); if(i <N)
h_B = (float*) malloc (size); Clil=A[i1+B[il
if (h_B ==0) Cleanup(); 1 '

h_C = (float*) malloc (size);
if (h_C ==0) Cleanup();

/I Initialize input vectors
Init(h_A, N);
Init(h_B, N);

/I Allocate vectors in device memory

cudaMalloc ((void**)& d_A, size);
cudaMalloc ((void**)& d_B, size);
cudaMalloc ((void**)& d_C, size);

/I Copy vectors to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

/I Run kernel
int threadsPerBlock = 256;
int blocksPerGrid =(N+ threadsPerBlock - 1)/ threadsPerBlock ;
VecAdd<<<blocksPerGrid , threadsPerBlock >>>(d_A, d_B, d_C,N);

/I Copy results from device memory to host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

Threads

Splits up tasks (as opposed to arrays in data parallel) such as
loops amongst separate processors.

Do communication as a side effect of data loop distribution. Not
an big issue on shared memory machines. Impossible on
distributed memory.

Common Implementations:
pthreads (original Unix standard)
OpenMP
OpenACC
OpenCL (Khronos Group)
DirectCompute (Microsoft)
Very C++ oriented:
i C++ AMP (MS/AMD)
I TBB (Intel C++ template library)
I Cilk (Intel, now in a gcc branch)

Pros:

Cons:

Doesnodot perturb data
incrementally added to existing serial
codes.

Becoming fairly standard for compilers.

Serial code left behind will be hit by
Amdahl 6s Law

Forget about taking this to the next level of
scalability. You can not do this on MPPs at
the machine wide level.

S

PGAS with Co-Array Fortran
(now Fortran 2008)

Co-array synchronization is at the heart of the typical Co-Array Fortran program.
Here is how to exchange an array with your north and south neighbors:

COMMON/XCTILB4/ B(N,4)[*]
SAVE /XCTILB4/

CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))
B(;,3) = B(;,1)[IMG_S]
B(;,4) = B(;,2)[IMG_N]
CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

Lots more examples at co-array.org.

Partitioned Global Address Space: (PGAS)

Multiple threads share at least a part of a Pros:
global address space. 1. Looks like SMP on a distributed
memory machine.
Can access local and remote data with 5 Currently translates code into
same mechanisms. an underlying message passing
version for efficiency.
Can distinguish between local and Cons:
remote data with some sort of typing. N Depends on (2) to be efficient.
_ 2. Can easily write lots of
Variants: expensive remote memory
Co-Array Fortran (CAF) access without paying attention.
Fortran 2008 c) Currently immature.
Unified Parallel C (UPC)

Frameworks

One of the more experimental approaches that was gaining some traction
was to use a parallel framework that handle the load balancing and

messaging while you nfil/l i no the science.
example:

Charm++ CHARM--++ : A high level view

I Object-oriented parallel extension
to C++ Sequential objects

I Run-time engine allows work to be
Aschedul edo on the ¢
I Highly-dynamic, extreme load-
balancing capabilities.

Chares
(concurrent objects)

Branched chares

I Completely asynchronous. (a form of replicated objects)
I NAMD, a very popular MD

simulation engine is written in | _Shared objects

Charm++ ..

Communication objects

Frameworks

A

After a long time with no positive reports in this space, | can definitely say that the
Machine Learning (Artificial Intelligence) community has embraced this in an
effective manner.

The most popular frameworks/toolkits/packages used for deep learning (aka
Neural Nets) are very much in this philosophy.

PyTorch, TensorFlow and others use a high level descriptive approach to arrange
other components, often themselves a higher level layer in Python or whatnot, to
invoke libraries written in C++ (and actually Fortran is hidden in there more often
than those groups would believe in the form of BLAS type libraries).

These frameworks use threads, GPUs and distributed nodes very heavily.

You could say that the math library nature of this work makes this unique, but the
innovation in arranging these codeflows is not at all rote.

Some Alternatives

OpenCL (Khronos Group)
I Everyone supports, but not as a primary focus
I Intel 7 OpenMP
i NVIDIAT CUDA, OpenACC
I AMD T now HIP
I Khronos has now brough out SYCL
Fortran 2008+ threads (sophisticated but not consistently implemented)
C++11 threads are basic (no loops) but better than POSIX
Python threads are fake (due to Global Interpreter Lock)
DirectCompute (Microsoft) is not HPC oriented
C++ AMP (MS/AMD)
TBB (Intel C++ template library)
Cilk (Intel, now in a gcc branch)
Intel oneAPI (Includes DPC++ and extends SYCL)
Kokkos

Lampson’'s Law

Butler Lampson famously said "All problems in computer science can be solved by another level of indirection.

The oft cited corollary to this is, "...except for the problem of too many layers of indirection.”

This has become a common theme with modern, deep, fragile software stacks.

cmake: makes makefiles
to solve problem of different build environments

Jupyter notebooks: layer psudo-html and python on javascript
to solve lack of standard interactive GUI (kind of like Flash did for the Web)

pip install: fetches multiple levels of dependencies (even with a -r requirements.txt file)
to solve Python dependency hell
but it only made it worse so
Anaconda tries to help
until something is missing...

Containers try to sweep the whole mess under the carpet (and then roll it up)
until something is missing...

The list goes on....

Parallel Computing Lampson's Law

Parallel computing isn't immune to Lampson's Law either. The failure of OpenACC and OpenMP to merge, coupled with a number of non-
standard, industry supported wannabees has led to several (of course) proposed layers on top of the standardized ones...

I mentioned them briefly in our earlier talks, but this is a good time to mention it again. I'll paraphrase heavily from a decent summary podcase
that is mentioned here:

https://iwww.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-
aurora/

Two of those are Kokkos and RAJA, which are portability layers from national labs. These two sit one level higher in the abstraction over the
vendor-specific programming models. Another national lab team is using RAJA to enable their performance portability along with a related
project, Umpire, for memory management.

RAJA itself is a project thatodéds focused on | oop execution, andcanusetheoes
underlying b a ¢ k e médndosy management model directly or they use this related project, Umpire. Umpire is another abstraction layer that

sits on top of these other programming models, providing a single interface to do memory management such as mem copies and allocations.
This design is nice because it offers a separation of concerns. RAJA is very much focused on executing your kernel on the GPU while Umpire

is just focused on memory management and moving memory around.

RAJA is being developed to run on GPUs using DPC++. Th at i s p aprteAR),f alnndt eiltédss an i mpSYE@Lmpeogranantiingon o f
model . SYCL is an open programming standard thatés focused on hedrm.idtogen
refers to the name of Intelés i mplementation of the SYCL stamgeard, with

Y

If this seems confusing and redundant, you aren't wrong. Beware any magic bullet that hasn't proven itself, regardless of the enthusiasm.

https://www.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-aurora/
https://www.hpcwire.com/off-the-wire/exascale-computing-project-podcast-discusses-code-development-for-earthquake-simulations-on-aurora/

Hybrid Coding

Problem: given the engineering constraint of a machine made up of a large collection of multi-
core processors, how do we use message passing at the wide level while still taking advantage
of the local shared memory?

Similar Problem: given a large machine with accelerators on each node (GPU or MIC), how do
we exploit this architecture?

Solution: Hybrid Coding. Technically, this could be any mix of paradigms. Currently, this is
likely MPI with a directive based approach mixed in.

At the node level, you may find OpenMP or OpenACC directives most usable.

But, one must design the MPI layer first, and them apply the OpenMP/ACC code at the node
level. Thereverse is rarely a viable option.

Counterintuitive:
MPI vs. OpenMP on a node

It might seem obvious that, since OpenMP is created to deal with SMP code, you

would ideally like to use that at the node level, even if you use MPI for big scalability
across an MPP.

Very often, it turns out that the MPI-to-the-core (pun completely intended) version is
faster. This indeed seems odd.

The answer is that after going to the trouble of doing a proper MPI data
decomposition, you have also greatly aided the caching mechanism (by moving
concurrently accessed data into different regions of memory). Hence the win.

However, if you are only interested in node-level scaling, this would be a lot of
effort.

Parallel Programming in a Nutshell

Assuming you just took our workshop

You have to spread something out.

These can theoretically be many types of abstractions: work, threads, tasks,
processes, data, é

But what they will be is your data. And then you will use MPI, and possibly
OpenMP/ACC, to operate on that data.

Domain Decomposition Done Well:
Load Balanced

A parallel algorithm can only be as fast as the slowest chunk.
I Might be dynamic (hurricane moving up coast)
Communication will take time

I Usually orders of magnitude difference between registers,
cache, memory, network/remote memory, disk

I Data |l ocality -messlb fmasztitgenrish rvieyr y

Is Texas vs. New Jersey a good idea?

|l n Concl usi oné

OpenACC

— [SE=—= [EE—

MPI Op%nMP

— |[EE=—= |SE=—

The Future and where you fit.

While the need is great, there is only a short list of serious contenders for 20@0ascalecomputing usability.

PGAS (partitioned global address space)

CAF (now in Fortran 2008!),UPC

Do you really care about software?

Of course you should. Here are a few reassuring words that software at
exascale is not an afterthought, followed by more than a few application
examples.

ECP application domains.

National security

Stockpile
stewardship

Next generation
simulation tools for
assessing nuclear
weapons performance

Response to hostile
threat environments
and reentry conditions

Energy security

Turbine wind plant
efficiency

High-efficiency,
low-emission
combustion engine
and gas turbine
design

Materials design for
extreme environments
of nuclear fission and
fusion reactors

Design and
commercialization of
Small Modular
Reactors

Subsurface use for
carbon capture,
petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst design

Economic security | Scientific discovery

Additive
manufacturing of
qualifiable metal parts

Reliable and efficient
planning of the power
grid

Seismic hazard risk
assessment

Find, predict, and
control materials and
properties

Cosmological probe of
the standard model of
particle physics

Validate fundamental
laws of nature

Demystify origin of
chemical elements

Light source-enabled
analysis of protein
and molecular
structure and design

Whole-device model
of magnetically
confined fusion
plasmas

Earth system Health care

Accelerate
and translate
cancer research

Accurate regional
impact assessments
in Earth system
models

Stress-resistant crop
analysis and catalytic
conversion of
biomass-derived
alcohols

Metagenomics for
analysis of
biogeochemical
cycles, climate
change,
environmental
remediation

XSDK Version 0.4.0: December 2018 (even better today)

https://xsdk.info

Each xSDK member package uses or
can be used with one or more xSDK
packages, and the connecting interface

is regularly tested for regressions. I ———

‘
Com D ~

Alguimia

PFLOTRAN PETSc

More domain SuperLU

Multiphysics Application C

Application A

SUNDIALS

Trilinos @

Application B

|
i
i
/\ [
i
i
i

December 2018 [1 [3
é %7dmath libraries Domain components Libraries Frameworks & tools SW engineering
omain A Reacting flow, etc. A Solvers, etc. A Doc generators. A Productivity tools.
components A Interoperable. | A Test, build framework. | A Models, processes.
A 16 mandatory

xSDK community

T

policies

Extreme-Scale Scientific Software Development Kit (xSDK)

1
1
1
1
: A Reusable.
1
1
1
1

A Spack xSDK
installer

o \
EXASCALE
COMPUTING
\ PROJECT

More
libraries

xSDK functionality, Dec 2018

Tested on key machines at ALCF,
NERSC, OLCF, also Linux, Mac OS X

xSDK

More
external
software

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper
levels of package interoperability

4

