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Quantum Mechanical Approach to Solid State Materials

Electron: Nucleus:

Density Functional Theory

Many-electron problem One-electron problem

electron-electron interaction 

electron-nucleus interaction     

many-electron Schrödinger equation

non-interacting electrons move in 
an effective potential: Veff[r]
one-electron Schrödinger equation

 
− 

2

2me

∇2 + e2 ρ( ′r )
r − ′r

d 3 ′r
∞∫ − e2 Znr −


Rn


Rn

∑ +Vxc ρ⎡⎣ ⎤⎦
⎛

⎝
⎜

⎞

⎠
⎟ Ψα (r ) = εαΨα (r )



© Pittsburgh Supercomputing Center, All Rights Reserved

The Self-consistent Process in an Ab Initio Electronic Structure Calculation

One-electron Schrödinger Equation
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Single site case

Particle in one atom site potential V : ( "𝐻! + 𝑉)| ⟩𝜓 =E | ⟩𝜓 *𝐺 = (𝐸 − "𝐻! − 𝑉)"#

"𝐻!| ⟩𝜑 =E | ⟩𝜑Free particle:

Schrodinger Eq. Green’s function

*𝐺! = (𝐸 − "𝐻!)"#

Wave-function is obtainable:| ⟩𝜓 = (I + *𝐺V)| ⟩𝜑 Charge density
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Green’s function definition:

Obtain charge density without wave-function :
| ⟩𝜓 = (I + *𝐺!T)| ⟩𝜑 T: single site scattering matrix
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Multi-site case

Green’s function:

Dyson equation: 𝜏 𝐸 = 𝑡"# 𝐸 − 𝑔!(𝐸)
"#

Matrix rank is:  1, no spin: 𝑁(𝑙()* + 1)+ 2𝑁(𝑙()* + 1)+2, spin:
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Differences (Advantages) comparing to directly solving KS Eq. :

1. No pseudopotentials required

2. No wave-function normalization and orthogonalization

3. No Hamiltonian diagonalization

4. Can be used to study random alloys (combining with CPA)
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Brief summary on KKR method:

1. Solve single-site solution Z and J. single-site scattering matrix (t) 
and free particle propagator (g0). 

2. Build KKR matrix.

3. Invert KKR matrix, obtain multiple-scattering matrix (\tau)

4. Construct Green’s function with \tau, Z and J

5. Obtain charge density through Green’s function

6. Obtain effective potential through charge density (LDA or GGA)

7. Go to DFT self-consistent
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The Self-consistent Process in the Green function based Ab 
initio Electronic Structure Calculation

Green function of the Kohn-Sham Equation
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Matrix inverse multi-core acceleration

through LU decomposition: 1, 𝐴 = 𝐿𝑈Solving X: 𝐴𝑋⃑ = 𝐵
2, 𝐿𝑈𝑋⃑ = 𝐵

L𝑌 = 𝑀 U𝑋⃑ = 𝑁

3, 𝐿𝑌 = 𝐵
4,U𝑋⃑ = 𝑌

Solving X: is: 

Solving and

Intel MKL threads 
many-core 
acceleration ratio:

1 2 4 8

1X

1.76X

3.48X

5.39X

OMP
threads
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Offloading matrix inverse on GPUs

Block LU on CPU: 

Full inverse: 

𝑁+

𝑁, However much faster on GPU
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Recursive Block Inverse Technique

The block size is a performance tuning parameter

Performance of LSMS is dominated by double complex matrix matrix multiplication 
(zgemm in BLAS)
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Since the LSMS method requires only the first diagonal block of the inverse matrix, 
we perform block inverse recursively:



© Pittsburgh Supercomputing Center, All Rights Reserved

Offloading matrix inverse on GPUs (Code structure)

MuST Building
KKR matrix Matrix inverse

acceleration

Block LU
algorithm

KKR
matrix inverse

IF ACCEL

ELSE

Fortran-C
interface CUDA/cuSOLVER

functions

Fortran:

subroutine a(x1)
double complex:: x1(*) 
call matrix_inverse_cuda(x1)
end subroutine a

CUDA in C:
extern “C”
void matrix_inverse_cuda_(double complex *x1)
{

cudaMalloc;
cudaMemcpy(… , HostToDevice);
cusolverDnZgetrf; #LU decomposition
cusolverDnZgetrs; #solve linear equation
cudaMemcpy(… , DeviceToHost);
cudaFree;

}
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GPU	systems
GPUs	support	double	precision	(FP64)	:	NVIDIA	V100,	A100;	AMD	Instinct	…

1.	Lonestar6	@	TACC 2.	Bridges2	@	PSC 3.	BIL	cluster	@	PSC
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Acceleration	ratio	on	one	computing	node
Testing	Case:	NiAu alloy	totally	64	atoms;	KKR	matrix	size:	12450	x	12450

NiAu
spin-canted

Acceleration ratio

32 CPUs

8 CPUs + 4 A100
16 CPUs + 4 A100
32 CPUs + 4 A100

8 CPUs + 8 A100
16 CPUs + 8 A100
32 CPUs + 8 A100

1X

4.11X
6.29X

7.34X
5.01X

7.75X
10.43X

128 CPUs 3.33X
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Setting up environments on Bridges-2

Setting up environments:

1. MPI:
module load openmpi/4.1.1-
gcc8.3.1

2. CUDA runtime:
module load cuda/11.7.1

3. Intel MKL:
module load mkl/2020.4.304
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Download, compile and run

1. Download the latest code:

“git clone https://github.com/mstsuite/MuST.git”

2. Compile:
demo architecture file at :
“architecture/Bridges2-linux-gnu-mkl-cuda”
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Download, compile and run

3. A demo for GPU acceleration at location:

“Benchmark/CoCrFeMnNi/MT/u56_CUDA”

Submission example:

“sbatch -p GPU -t 48:0:0 -n 40 --gpus=v100-32:8 bash_script.sh”

In bash_script.sh:

#!/bin/bash
mpirun -n 40 ~/bind_MPI_to_GPU.sh ~/mst2_cuda < i_mst
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Outlook

1. Build KKR matrix on GPU, reduce data transfer time

2. Multi-GPU matrix inverse, enable larger unit cell size

3. Other types of acceleration cards

4. Full potential calculation speed up
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Thanks for your attention




