
© Pittsburgh Supercomputing Center, All Rights Reserved© Pittsburgh Supercomputing Center, All Rights Reserved

High performance GPU
accelerated MuST software

Xiao Liang, PhD

Pittsburgh Supercomputing Center

April 19, 2023

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Xiao Liang

Ed Hanna Derek Simmel

Yang Wang Hang Liu

This work was supported by the National Science Foundation through the OAC-
2139536 Characteristic Science Applications for the Leadership Class Computing
Facility award. The MuST package is the product of an open source project
supported in part by NSF Office of Advanced Cyberinfrastructure and the Division of
Materials Research within the NSF Directorate of Mathematical and Physical Sciences
under award number 1931367, 1931445, and 193152

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Quantum Mechanical Approach to Solid State Materials

Electron: Nucleus:

Density Functional Theory

Many-electron problem One-electron problem

electron-electron interaction

electron-nucleus interaction

many-electron Schrödinger equation

non-interacting electrons move in
an effective potential: Veff[r]
one-electron Schrödinger equation

− 

2

2me

∇2 + e2 ρ(′r)
r − ′r

d 3 ′r
∞∫ − e2 Znr −


Rn


Rn

∑ +Vxc ρ⎡⎣ ⎤⎦
⎛

⎝
⎜

⎞

⎠
⎟ Ψα (r) = εαΨα (r)

© Pittsburgh Supercomputing Center, All Rights Reserved

The Self-consistent Process in an Ab Initio Electronic Structure Calculation

One-electron Schrödinger Equation

 [−∇
2 +Veff (r)]⋅ψα (r) = εαψα (r)

LDA (or GGA) Potential

Veff (r) = 2ρ(′r)
r − ′r

d 3 ′r
∞∫ −

2Znr −

Rn


Rn

∑ +VXC
LDA (ρ(r), r)

ρ(r) = ψα (r)
εα ≤εF

∑ 2

 Veff (r)

 ρ(r), crystal structure []ground state , etc.E r

 Veff (r), crystal structure

E[ρ]= εα
εα ≤εF

∑ − ρ(r)ρ(′r)
r − ′r

d 3rd 3 ′r
∞∫ − VXC

LDA (ρ(r), r)ρ(r)d 3r
∞∫ + EXC

LDA[ρ]

Is ρ converged?
No

Yes

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Single site case

Particle in one atom site potential V : ("𝐻! + 𝑉)| ⟩𝜓 =E | ⟩𝜓 *𝐺 = (𝐸 − "𝐻! − 𝑉)"#

"𝐻!| ⟩𝜑 =E | ⟩𝜑Free particle:

Schrodinger Eq. Green’s function

*𝐺! = (𝐸 − "𝐻!)"#

Wave-function is obtainable:| ⟩𝜓 = (I + *𝐺V)| ⟩𝜑 Charge density

𝐺 𝑟, 𝑟$; 𝐸 =5
%

𝑟 𝑛 𝑛 𝑟′
𝐸 − 𝐸% + 𝑖𝜂

Density is 𝜌 𝑟 = −
2
𝜋
𝐼𝑚 ?

"&

'!

𝐺 𝑟, 𝑟; 𝐸 𝑑𝐸

Green’s function definition:

Obtain charge density without wave-function :
| ⟩𝜓 = (I + *𝐺!T)| ⟩𝜑 T: single site scattering matrix

© Pittsburgh Supercomputing Center, All Rights Reserved

Multi-site case

Green’s function:

Dyson equation: 𝜏 𝐸 = 𝑡"# 𝐸 − 𝑔!(𝐸)
"#

Matrix rank is: 1, no spin: 𝑁(𝑙()* + 1)+ 2𝑁(𝑙()* + 1)+2, spin:

© Pittsburgh Supercomputing Center, All Rights Reserved

Differences (Advantages) comparing to directly solving KS Eq. :

1. No pseudopotentials required

2. No wave-function normalization and orthogonalization

3. No Hamiltonian diagonalization

4. Can be used to study random alloys (combining with CPA)

© Pittsburgh Supercomputing Center, All Rights Reserved

Brief summary on KKR method:

1. Solve single-site solution Z and J. single-site scattering matrix (t)
and free particle propagator (g0).

2. Build KKR matrix.

3. Invert KKR matrix, obtain multiple-scattering matrix (\tau)

4. Construct Green’s function with \tau, Z and J

5. Obtain charge density through Green’s function

6. Obtain effective potential through charge density (LDA or GGA)

7. Go to DFT self-consistent

© Pittsburgh Supercomputing Center, All Rights Reserved

The Self-consistent Process in the Green function based Ab
initio Electronic Structure Calculation

Green function of the Kohn-Sham Equation

,
(, ;) (;) () (;) (;) (;)n nn n n n
n n L n LL L n L n L n

L L L
G Z Z Z Je e t e e e e* *

¢ ¢
¢

= -å år r r r r r

LDA (or GGA) Potential

3
eff XC

22 ()() [()]
n

n

n

ZV d Vr r
¥

¢
¢= - +

¢- -åò
R

rr r r
r r r R

core
2() () Im (, ;)F

b

G z dz
e

e
r r

p
= - òr r r reff ()V r

ground state , etc.E

eff (), crystal structureV r

3 3 3
X XC

() ()[] () () () []F

CE d d d V d E
e r rr er e e r r
-¥ ¥ ¥

¢
¢= - - +

¢-ò ò ò
r r r r r r r
r r

Is density
converged?No

Yes

Atomic units:
me = 1 2

! = 1
µB = e c

e2 = 2

A mixing scheme applied here

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

i

j

LIZ for atom i

LIZ for atom j

vacuum

LIZ for atom i

i

τ 11(ε) =

t 1
−1(ε) ! −g1M (ε)

! " !
−gM1(ε) ! t M

−1(ε)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

11

−1

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Matrix inverse multi-core acceleration

through LU decomposition: 1, 𝐴 = 𝐿𝑈Solving X: 𝐴𝑋⃑ = 𝐵
2, 𝐿𝑈𝑋⃑ = 𝐵

L𝑌 = 𝑀 U𝑋⃑ = 𝑁

3, 𝐿𝑌 = 𝐵
4,U𝑋⃑ = 𝑌

Solving X: is:

Solving and

Intel MKL threads
many-core
acceleration ratio:

1 2 4 8

1X

1.76X

3.48X

5.39X

OMP
threads

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Offloading matrix inverse on GPUs

Block LU on CPU:

Full inverse:

𝑁+

𝑁, However much faster on GPU

© Pittsburgh Supercomputing Center, All Rights Reserved

Recursive Block Inverse Technique

The block size is a performance tuning parameter

Performance of LSMS is dominated by double complex matrix matrix multiplication
(zgemm in BLAS)

A11 A12

A21 A22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= A11 − A12 A22
−1A21

⎡⎣ ⎤⎦
−1

*

* *

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⇓

A11 − A12 A22
−1A21

⎡⎣ ⎤⎦
−1
=

B11 B12

B21 B22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= B11 − B12B22
−1B21

⎡⎣ ⎤⎦
−1

*

* *

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⇓


Since the LSMS method requires only the first diagonal block of the inverse matrix,
we perform block inverse recursively:

© Pittsburgh Supercomputing Center, All Rights Reserved

Offloading matrix inverse on GPUs (Code structure)

MuST Building
KKR matrix Matrix inverse

acceleration

Block LU
algorithm

KKR
matrix inverse

IF ACCEL

ELSE

Fortran-C
interface CUDA/cuSOLVER

functions

Fortran:

subroutine a(x1)
double complex:: x1(*)
call matrix_inverse_cuda(x1)
end subroutine a

CUDA in C:
extern “C”
void matrix_inverse_cuda_(double complex *x1)
{

cudaMalloc;
cudaMemcpy(… , HostToDevice);
cusolverDnZgetrf; #LU decomposition
cusolverDnZgetrs; #solve linear equation
cudaMemcpy(… , DeviceToHost);
cudaFree;

}

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

GPU	systems
GPUs	support	double	precision	(FP64)	:	NVIDIA	V100,	A100;	AMD	Instinct	…

1.	Lonestar6	@	TACC 2.	Bridges2	@	PSC 3.	BIL	cluster	@	PSC

© Pittsburgh Supercomputing Center, All Rights Reserved

Acceleration	ratio	on	one	computing	node
Testing	Case:	NiAu alloy	totally	64	atoms;	KKR	matrix	size:	12450	x	12450

NiAu
spin-canted

Acceleration ratio

32 CPUs

8 CPUs + 4 A100
16 CPUs + 4 A100
32 CPUs + 4 A100

8 CPUs + 8 A100
16 CPUs + 8 A100
32 CPUs + 8 A100

1X

4.11X
6.29X

7.34X
5.01X

7.75X
10.43X

128 CPUs 3.33X

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT	basics
• Green’s	function	approach	(KKR	method)
• Locally	Self-consistent	Multiple	Scattering	(LSMS)	method
• Computational	challenge:	matrix	inverse
• GPU	acceleration:	code	review
• Benchmark	systems	and	results
• Run	GPU	accelerated	MuST on	Bridges-2	@	PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Setting up environments on Bridges-2

Setting up environments:

1. MPI:
module load openmpi/4.1.1-
gcc8.3.1

2. CUDA runtime:
module load cuda/11.7.1

3. Intel MKL:
module load mkl/2020.4.304

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

1. Download the latest code:

“git clone https://github.com/mstsuite/MuST.git”

2. Compile:
demo architecture file at :
“architecture/Bridges2-linux-gnu-mkl-cuda”

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

1. Download the latest code:

“git clone https://github.com/mstsuite/MuST.git”

2. Compile:
demo architecture file at :
“architecture/Bridges2-linux-gnu-mkl-cuda”

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

3. A demo for GPU acceleration at location:

“Benchmark/CoCrFeMnNi/MT/u56_CUDA”

Submission example:

“sbatch -p GPU -t 48:0:0 -n 40 --gpus=v100-32:8 bash_script.sh”

In bash_script.sh:

#!/bin/bash
mpirun -n 40 ~/bind_MPI_to_GPU.sh ~/mst2_cuda < i_mst

© Pittsburgh Supercomputing Center, All Rights Reserved

Outline:

• DFT basics
• Green’s function approach (KKR method)
• Locally Self-consistent Multiple Scattering (LSMS) method
• Computational challenge: matrix inverse
• GPU acceleration: code review
• Benchmark systems and results
• Run GPU accelerated MuST on Bridges-2 @ PSC
• Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

Outlook

1. Build KKR matrix on GPU, reduce data transfer time

2. Multi-GPU matrix inverse, enable larger unit cell size

3. Other types of acceleration cards

4. Full potential calculation speed up

© Pittsburgh Supercomputing Center, All Rights Reserved

Thanks for your attention

