Carnegie

WPSC R B

High performance GPU
accelerated MuST software

Xiao Liang, PhD

Pittsburgh Supercomputing Center

April 19, 2023 © Pittsburgh Supercomputing Center, All Rights Reserved

O 8 & github.com

[wiki Images Create Wiki Images 4 days ago

README.md

MuST (Multiple Scattering Theory) is an ab initio electronic structure calculation software suite, with

petascale and beyond computing capability, for the first principles study of quantum phenomena in
disordered materials.

It is capable of performing

KKR for ordered structures

KKR-CPA for random structures (with/without short range chemical order)

LSMS calculations for large systems

Kubo-Greenwood method for residual resistivity calculation

e ...and many more upcoming features!

This repository is actively developed and maintained - please check for regular updates!

e | MuST Wiki | MuST Youtube Channel

User Guide

Center, All Rights Reserved
All the relevant information and instructions are provided in the documentation

WPSC

\\“& 1
Yang Wang

Hang Liu

This work was supported by the National Science Foundation through the OAC-
2139536 Characteristic Science Applications for the Leadership Class Computing
Facility award. The MuST package is the product of an open source project

; supported in part by NSF Office of Advanced Cyberinfrastructure and the Division of
Ed Han na Derek SI m mel Materials Research within the NSF Directorate of Mathematical and Physical Sciences
under award number 1931367, 1931445, and 193152

ol
il
W\ o .

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

GPU acceleration: code review

Benchmark systems and results

Run GPU accelerated MuST on Bridges-2 @ PSC

Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

© Pittsburgh Supercomputing Center, All Rights Reserved

Quantum Mechanical Approach to Solid State Materials

Electron: o Nucleus:
Many-electron problem One-electron problem
y\o ©— y\. \o
) é
[/ ./'

electron-electron interaction non-interacting electrons move in

, , an effective potential: V g o]
electron-nucleus interaction

2
A V2+82L f’(’”) &7 -y ——+V | p||¥ (F)=¢,¥ ()
_ e

© Pittsburgh Supercomputing Center, All Rights Reserved

The Self-consistent Process in an Ab Initio Electronic Structure Calculation

V_.(r), crystal structure ﬂ

One-electron Schrodinger Equation

-V +V Py, (F) =€y, ()

p(A)= Y v,

eang

‘ LDA (or GGA) Potential Is p converged?
) 27 No
r)=) = r—

L+ Vo (p(F),F)

Yes

ground state E| p|, etc.

p(7), crystal structure

Z e _J p(’”)P(’” Ad3 — J‘ VLDA(p(r) r)p(r)d3—>+ELDA[p]

E,SEp ‘7" 7/'|

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics
Green’s function approach (KKR method)

© Pittsburgh Supercomputing Center, All Rights Reserved

Single site case

Hy|p)=E |¢) Go = (E — Hy)™?

(Hy + VY)=E |¢) G=(E—Hy—-V)!

Wave-function is obtainable:[)) = (I1+ GV)|¢) T——» Charge density
lY) = (I1+ G,T)|@) T:single site scattering matrix

(r|n)(n|r’)
E—-E,+1in
n

Green's function definition: G(r,r'; E) =

Erp
2
Density is p(r) = —Elm f G(r,r; E)dE

© Pittsburgh Supercomputing Center, All Rights Reserved

Multi-site case

Green's function:

G(rp, 1y €) = Z Z7 (xnse)trp (€)Z1) (tn;€) — Z Z7 (rp;€)] (xn;€)
LL L

Dyson equation: Z(E) = [E_l(E) - @(E)]_l

- |

11_1(8) —glz(g) .. _&N(g)
T-matrix: 7" (€)= _52.1(8) z 1.(8) _Szz.v(g)
i —&vi(&) —gy,(&) - L_rl(g) dun

Matrix rank is: 1, no spin: N(lLnax +1)% 2, spin: 2N(lpex + 1)2

© Pittsburgh Supercomputing Center, All Rights Reserved

Differences (Advantages) comparing to directly solving KS Eq. :

1. No pseudopotentials required

2. No wave-function normalization and orthogonalization

3. No Hamiltonian diagonalization

4. Can be used to study random alloys (combining with CPA)

© Pittsburgh Supercomputing Center, All Rights Reserved

Brief summary on KKR method:

1. Solve single-site solution Z and J. single-site scattering matrix (t)
and free particle propagator (g0).

2. Build KKR matrix.

3. Invert KKR matrix, obtain multiple-scattering matrix (\tau)

4. Construct Green’s function with \tau, Z and |

5. Obtain charge density through Green'’s function

6. Obtain effective potential through charge density (LDA or GGA)

7. Go to DFT self-consistent

© Pittsburgh Supercomputing Center, All Rights Reserved

The Self-consistent Process in the Green function based Ab

initio Electronic Structure Calculation

Atomic units:

 =1/2
V. (1), crystal structure ﬂ :"_ 1 /

u, =efc
Green function of the Kohn-Sham Equation e’ =2
\-_) ”’ nag) ZZ”(n’ TZZ (g)Z”*(n’g) ZZ”(n’g)‘]n*(n’) “‘
. . 2 €F
<+<— A mixing scheme applied here pr) = pcore(r)__ImJ‘ G(r,r;z)dz
/4 €p
LDA (or GGA) Potential Is density
NO | converged?

h
ﬁ Yes

I_mgp(g)dg—f P)d3 rd’r LVXC(r)p(r)d3r+EXC[p]

r—r]

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics
Green’s function approach (KKR method)
Locally Self-consistent Multiple Scattering (LSMS) method

© Pittsburgh Supercomputing Center, All Rights Reserved

G(rp, rps€) = Z Z7 (rn;€)t1(e)Z]) (xns€) — Z Z1 (rn;€)J1" (rn;€) Locally Self-consistent Multiple
3

LL Scattering (LSMS) Method
LIZ for atom i The LIZ cluster with M atoms
— around each site is considered
‘ ‘ ‘ Q ‘ ‘ being embedded in vacuum. The
T-matrix for site i is given by
Ll_l(g) —&M(g) _
(&)= : . :
_ng(g) L;(g)
LIZ for atom i

vacuum

LIZ for atom j

000 000

© Pittsburgh Supercomputims

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

© Pittsburgh Supercomputing Center, All Rights Reserved

Matrix inverse multi-core acceleration

1 0 0] [y,] T[1° 1 1 17 [z U

3 1 0f | =15 0 —2 —6| |zz| =

1 3 1 [ys] 10 0 0 3] |zs| |6
LY =M UX =N

Solving X; AX = B through LU decomposition: 1,4 = LU
2, LUX =B

3, LY B
4,UX =

5.39X

3.48X

Solving X: Ao Aot | Xoo XOI] — [1 O] iS:
5™ Ay A | X10 X11 0 1] ™

Solvin Ao Aot] —Xool _ llland [Aoo Am] [Xm] _ [0} o T, g
5 Ao A [Xio A An| [Xn 1

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

GPU acceleration: code review

© Pittsburgh Supercomputing Center, All Rights Reserved

Offloading matrix inverse on GPUs

G(rp, 1n€) = ZZf(rn;e)rff,(e)Zf,*(rn;e) — Z Z7 (rp;€)] (xn;€)
LL L

Block LU on CPU: N?

Full inverse: N3 However much faster on GPU

© Pittsburgh Supercomputing Center, All Rights Reserved

Recursive Block Inverse Technique

Since the LSMS method requires only the first diagonal block of the inverse matrix,
we perform block inverse recursively:

__1 [=

4, | 4 — [411—4121_42_21421]_1 *

i ‘—421 ‘—422) * *
U
_ ——1 — | —
-+ | B, | B B, -B,B.B, | |*
— 4 A4 — L — I:—11 212222221
|:‘—411 ‘—412—22—21] B, | B, - -

The block size is a performance tuning parameter

Performance of LSMS is dominated by double complex matrix matrix multiplication
. © Pittsburgh Supercomputing Center, All Rights Reserved
(zgemm in BLAS)

Offloading matrix inverse on GPUs (Code structure)

-

MuST

"

-

=
Building

KKR matrix

_
s

N\

matrix inverse

J
\
KKR

Fortran-C

IF ACCEL [

Matrix inverse interface CUDA/cuSOLVER
acceleration functions

~

subroutine a(x1)

double complex:: x1(*)
call matrix_inverse_cuda(x1)

end subroutine a

ELSE >[

Block LU
algorithm

extern “C"
void matrix_inverse_cuda_(double complex *x1)
{
cudaMalloc;
cudaMemcpy(..., HostToDevice);
cusolverDnZgetrf;
cusolverDnZgetrs;
cudaMemcpy(... , DeviceToHost);
cudaFree;

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

GPU acceleration: code review

Benchmark systems and results

© Pittsburgh Supercomputing Center, All Rights Reserved

GPU systems

GPUs support double precision (FP64) : NVIDIA V100, A100; AMD Instinct ...

1. Lonestar6é @ TACC 2. Bridges2 @ PSC 3. BIL cluster @ PSC

© Pittsburgh Supercomputing Center, All Rights Reserved

Acceleration ratio on one computing node

Testing Case: NiAu alloy totally 64 atoms; KKR matrix size: 12450 x 12450

NiAu
spin-canted

3.33X
4.11X

32 CPUs

128 CPUs

8 CPUs + 4 A100
16 CPUs + 4 A100
32 CPUs +4 A100
8 CPUs + 8 A100
16 CPUs + 8 A100
32 CPUs + 8 A100

1X

6.29X
7.34X

5.01X
7.75X

Acceleration ratio

) GPU number/MPI rank number 8 16 32
NiAu
ineanted 2 5528(0.101) 4543(0.108)
(on PSCE’BIL 3.A100-80G) 4 4618(0.104) 3022(0.117) 2589(0.134)
8 3790(0.194) 2452(0.129) 1821(0.148)

10.43X
4>
MPI rank number
(=CPU core number)
32 19002
64 11069
128 5695

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

GPU acceleration: code review

Benchmark systems and results
Run GPU accelerated MuST on Bridges-2 @ PSC

© Pittsburgh Supercomputing Center, All Rights Reserved

Setting up environments on Bridges-2

GPU nodes

Bridges-2's GPU nodes provide exceptional performance and scalability for deep learning and accelerated computing,
with a total of 40, 960 CUDA cores and 5,120 tensor cores. Bridges’' GPU-AI resources have been migrated to Bridges-2,

Setting up environments:

adding the DGX-2 and nine more V100 GPU nodes to Bridges-2's GPU resources.

GPU nodes

1. MPI:

Number

GPUs per node

GPU memory

24

8 NVIDIA TeslaV100-32GB

SXM2

32 GB per GPU
256GB total/node

9

8 NVIDIA V100-16GB

1

16 NVIDIA Volta

16GB per GPU
128GB total/node

V100-32GB

32GB per GPU
512GB total

module load openmpi/4.1.1-
gcc8.3.1

2. CUDA runtime:

GPU module load cuda/11.7.1
1 Pf/s tensor
performance
2 Intel Xeon|Gold 6248 2 Intel Xeon [Gold 2 Intel XeonPlatinum .
“Cascade Lake" CPUs 6148 CPUs 8168 3. Intel MKL:
CPUs 20 cores per CPU, 40 cores 20 cores per CPU , 40 24 cores per CPU, 48 mOdU|e |Oad mk|/20204304
per node cores per node cores total
2.50 - 3.90 GHz 24-37GHz 2.7 -3.7 GHz
RAM 512GB, DDR4-2933 192 GB, DDR4-2666 1.5 TB, DDR4-2666

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

“git clone https://github.com/mstsuite/MuST.git"

demo architecture file at ;
“architecture/Bridges2-linux-gnu-mkl-cuda”

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

Acceleration = 1: enable GPU acceleration
Acceleration = 0: otherwise

o — S

Acceleration

LIBXC_PATH = /opt/packages/LibXC/libxc-4.3.4/PGI

ACCEL_PATH = /usr/local/cuda

FFTW_PATH = fusr/local/FFTW/fftw-3.3.8/PGI

P3DFFT_PATH = /opt/packages/P3DFFT/p3dfft-2.7.9/PGI

LUA_PATH = [opt/packages/Lua/lua-5.3.5/PGI

#

If LUA_PATH, LIBXC_PATH, FFTW_PATH, and/or P3DFFT_PATH are empty, the
H)

“git clone https://github.com/mstsuite/MuST.git” ¢ Library paths and clements, &.8.) @ 1 10.5/pc1

demo architecture file at : e
“architecture/Bridges2-linux-gnu-mkl-cuda” aectl = cu

ACCEL_PATH /opt/packages/cuda/v11.7.1/
LIBXC_PATH /jet/home/liangstein/libxc
FFTW_PATH /jet/home/liangstein/intel_fftw_scalapack/fftw3
P3DFFT_PATH = /jet/home/liangstein/intel_fftw_scalapack/p3dfft
LUA_PATH
LIBS $ (MATH_PATH) /lib/intel64 -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -1ldl -lpthread -lm \
mkl_scalapack_1lp64 -lmkl_cdft_core -1lmkl_blacs_openmpi_lp64 \
-L$ (ACCEL_PATH) /1ib64 -lcudart -lcuda -lcublas -lstdc++ -lcusolver
-lgfortran

Compiler tools
4= e

mpicc
= mpicxx
= mpif90
mpif90
MPICC mpicc
ACCEL_CXX nvcc —arch=sm_60
ARCHV ar -r

© Pittsburgh Supercomputing Center, All Rights Reserved

Download, compile and run

“Benchmark/CoCrFeMnNi/MT/u56_CUDA"

“sbatch -p GPU -t 48:0:0 -n 40 --gpus=v100-32:8 bash_script.sh”

#!/bin/bash
mpirun -n 40 ~/bind_MPI_to_GPU.sh ~/mst2_cuda < i_mst

© Pittsburgh Supercomputing Center, All Rights Reserved

DFT basics

Green’s function approach (KKR method)

Locally Self-consistent Multiple Scattering (LSMS) method
Computational challenge: matrix inverse

GPU acceleration: code review

Benchmark systems and results

Run GPU accelerated MuST on Bridges-2 @ PSC

Outlook

© Pittsburgh Supercomputing Center, All Rights Reserved

1. Build KKR matrix on GPU, reduce data transfer time

2. Multi-GPU matrix inverse, enable larger unit cell size

3. Other types of acceleration cards

4. Full potential calculation speed up

© Pittsburgh Supercomputing Center, All Rights Reserved

Thanks for your attention

© Pittsburgh Supercomputing Center, All Rights Reserved

