
Advanced OpenMP

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

What is Advanced OpenMP?

Pretty much everything that isn't parallel for/do, except

the GPU stuff. We save that for a different talk.

Different Work Sharing Constructs

Master

Thread

parallel

for/do

parallel

for/do
parallel

for/do

Master

Thread

for/do

parallel region

for/do for/do

What we have been doing

What we could do (less overhead, no idle cores, finer control, more flexible algorithms)

The parallel Construct
This sets the stage for most of the more advanced or flexible directives we are going to use. It tells the

system to grab the specified number of threads and set them loose.

#pragma omp parallel [clause, clause, ...]

 structured-block

The clauses are

if([parallel :] scalar-expression)

num_threads(integer-expression)

default(data-sharing-attribute)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction([reduction-modifier ,] reduction-identifier : list)

proc_bind(affinity-policy) One of primary, close, spread

allocate([allocator :] list)

Multiple ways of specifying threads.

In order of precedence:

if clause Logical value determines if this region is parallel or serial.

num_threads clause Set this to specify how many threads in this region.

omp_set_num_threads() A library API to set the threads.

OMP_NUM_THREADS The environment variable we have been using.

Default Often the number of cores on the node.

There is also, depending on the compute environment, the possibility of dynamic thread counts.

There are a few library APIs to deal with that.

Fortran 90
Fortran 90 has data parallel constructs that map

very well to threads. You can declare a

workshare region and OpenMP will do the right

thing for:

FORALL

WHERE

Array assignments

PROGRAM WORKSHARE

 INTEGER N, I, J
 PARAMETER (N=100)
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
 .
 .
 .
!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)

!$OMP WORKSHARE
 CC = AA * BB
 DD = AA + BB
 FIRST = CC(1,1) + DD(1,1)
 LAST = CC(N,N) + DD(N,N)
!$OMP END WORKSHARE

!$OMP END PARALLEL

 END

Another Work Sharing Construct

Master

Thread

Sections

Section 2

Section 3

Section 4 Section 3

Section 1

Section 2

Section 1

Each section will be processed by one thread. The number of sections can be

greater or less than the number of threads available – in which case threads will do

more than one section or skip, respectively.

Sections
.
.
!$OMP PARALLEL SHARED(A,B,X,Y), PRIVATE(INDEX)

!$OMP SECTIONS

!$OMP SECTION
 DO INDEX = 1, N
 X(INDEX) = A(INDEX) + B(INDEX)
 ENDDO

!$OMP SECTION
 DO INDEX = 1, N
 Y(INDEX) = A(INDEX) * B(INDEX)
 ENDDO

!$OMP END SECTIONS

!$OMP END PARALLEL
.
.

.

.

.
#pragma omp parallel shared(a,b,x,y) private(index)
 {

 #pragma omp sections
 {

 #pragma omp section
 for (index=0; index <n; index++)
 x[i] = a[i] + b[i];

 #pragma omp section
 for (index=0; index <n; index++)
 y[i] = a[i] * b[i];

 }

 }
.
.

Both for/do loops run concurrently. Still same results as serial here.

And for ultimate flexibility: Tasks

Actually, any thread can spin off tasks. And any thread can pick up a task. They will

all wait for completion at the end of the region.

Master

Thread

parallel region

Summing An Array

float array_sum(float *a, int length){

 float total=0;

 for (int i = 0; i < length; i++) {
 total += a[i];
 }

 return total;
}

Let's take the simple task of summing an array.

float array_sum(float *a, int length){

 float total=0;

 #pragma omp parallel for reduction(+:total)
 for (int i = 0; i < length; i++) {
 total += a[i];
 }

 return total;
}

Serial Code
Easy OpenMP Version

Recursively Summing An Array

float array_sum(float *a, int length){

 // terminal case
 if (length == 0) {
 return 0;
 }
 else if (length == 1) {
 return a[0];
 }

 // recursive case
 int half = length / 2;
 return array_sum(a, half) + sum(a + half, length - half);
}

But maybe we are handed a recursive version of this same code. This represents a

large class of algorithms.

Recursively Summing An Array With Tasks

float array_sum(float *a, int length){

 if (length == 0) {
 return 0;
 }
 else if (length == 1) {
 return a[0];
 }

 int half = length / 2;
 float x, y;

 #pragma omp parallel
 #pragma omp single nowait
 {
 #pragma omp task shared(x)
 x = array_sum(a, half);
 #pragma omp task shared(y)
 y = array_sum(a + half, length - half);
 #pragma omp taskwait
 x += y;
 }
 return x;
}

OpenMP tasks allow us to

naturally spin off threads of

work.

Optimized Recursively Summing An Array With Tasks

float array_sum(float *a, int length) {

float total;

#pragma omp parallel
#pragma omp single nowait
total = parallel_sum(a, n);

return total;
}

float serial_sum(float *a, int length)
{
 if (length == 0) {
 return 0;
 }
 else if (length == 1) {
 return a[0];
 }

 size_t half = n / 2;
 return serial_sum(a, half) +
 serial_sum(a + half, length - half);
}

float parallel_sum(float *a, int length){

 if (length <= CUTOFF) {
 return serial_sum(a, length);
 }

 int half = length / 2;
 float x, y;

 #pragma omp task shared(x)
 x = parallel_sum(a, half);
 #pragma omp task shared(y)
 y = parallel_sum(a + half, length - half);
 #pragma omp taskwait
 x += y;

 return x;
}

BTW, we have essentially reproduced the

functionality here of the newish taskloop

directive.

Fibonacci Tasks

int fib(int n)
{
 int i, j;

 if (n<2)
 return n;

 else {

 #pragma omp task shared(i) firstprivate(n)
 i=fib(n-1);

 #pragma omp task shared(j) firstprivate(n)
 j=fib(n-2);

 #pragma omp taskwait
 return i+j;
 }
}

#include <stdio.h>
#include <omp.h>

int main()
{
 int n = 10;

 #pragma omp parallel shared(n)
 {
 #pragma omp single
 printf ("fib(%d) = %d\n", n, fib(n));
 }
}

Here is one that is almost always presented as a recursive algorithm.

Task Capability

Tasks have additional directives and clauses. The most important are:

taskwait (wait for completion of child tasks, should almost always use)

taskgroup (can wait on child & descendants)

taskyield (can suspend for another task, avoid deadlock)

final (no more task creation after this level)

untied (can change thread dynamically)

mergable (can merge data with enclosing region)

depend (list variable dependencies between tasks [in/out/inout]

 This provides a way to order workflow.)

This last one gives us some very powerful capabilities to efficiently manage order

dependencies, and has been an active area of OpenMP development in versions 3.0 through

the latest 5.0.

From the very nice OpenMP.org video https://www.youtube.com/watch?v=YZCWPkKLVYM

Use the dependencies to describe what is happening to
the data, not to force some execution order.

The execution order will depend up upon the actual
order of the source code, with the dependencies
limiting when tasks may be executed.

Only one

at a time

Dynamic Dependencies

We can also now (as of OpenMP 5.0) deal with dynamically defined dependencies, so a

list of items may include array sections.

#pragma omp parallel
#pragma omp single
{

 for (int i = 0; i < n; ++i)
 #pragma omp task depend(out: array[i])
 compute_element(array[i]);

 #pragma omp task depend(iterator(k=0:n),in: array[k])
 use_elements(array);

}

Here n is evaluated at runtime, and is the equivalent of creating n different in

dependency clauses (depend (in: array[0], array[1], array[2],...) .

Tasks Are Very Powerful

If you really embrace this task paradigm, there is now even a taskloop directive that

allows you to decompose for/do loops into tasks in a very controlled manner. We won't

go into it here.

However before we leave these elegant heights and descend into some much grittier low-

level detail, I want to emphasize that this task approach provides a powerful, and robust

(as in, not error prone) framework that would have been a dream for any pthreads

programmer of yesteryear. You are getting all the scheduling that they have to do at no

cost.

Now, let's go back to our original parallel for/do loops and see what happens if we want

to manage them at a low level ourselves...

Parallel Region Loops with C

#pragma omp parallel shared(t, t_old) private(i,j, iter) firstprivate(niter)
for(iter = 1; iter <= niter; iter++) {

 #pragma omp for
 for(i = 1; i <= NR; i++) {
 for(j = 1; j <= NC; j++) {
 t[i][j] = 0.25 * (t_old[i+1][j] + t_old[i-1][j] +
 t_old[i][j+1] + t_old[i][j-1]);
 }
 }

 dt = 0.0;

 #pragma omp for reduction(max:dt)
 for(i = 1; i <= NR; i++){
 for(j = 1; j <= NC; j++){
 dt = fmax(fabs(t[i][j]-t_old[i][j]), dt);
 t_old[i][j] = t[i][j];
 }
 }
 if((iter % 100) == 0) {
 print_trace(iter);
 }
}

This is a simpler loop

than our actual exercise two’s

condition while loop.

Working example in slide notes

below is not that complicated, but

we will skip it for the nonce.

Parallel Region Loops with Fortran

!$omp parallel shared(T, Told) private(i,j,iter) firstprivate(niter)
 do iter=1,niter
 !$omp do
 do j=1,NC
 do i=1,NR
 T(i,j) = 0.25 * (Told(i+1,j)+Told(i-1,j)+
 $ Told(i,j+1)+Told(i,j-1))
 enddo
 enddo
 !$omp end do

 dt = 0

 !$omp do reduction(max:dt)
 do j=1,NC
 do i=1,NR
 dt = max(abs(t(i,j) - told(i,j)), dt)
 Told(i,j) = T(i,j)
 enddo
 enddo
 !$omp end do

 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
 enddo
!$omp end parallel

Thread control.

If we did this, we would get correct results, but we would also find that our output

is a mess.

How many iterations [100-1000]? 1000

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67 ---------- Iteration number:

100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 ---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67

[999,999]: 94.86 [1000,1000]: 98.67

All of our threads are doing output. We only want the master thread to do this.

This is where we find the rich set of thread control tools available to us in OpenMP.

Solution with Master

.

.
!$omp master
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
!$omp end master
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {
 print_trace(iter);
}
.
.

The Master directive will only allow the region to be executed by the master thread.

Other threads skip. By skip we mean race ahead - to the next iteration. We really

should have an “omp barrier” after this or threads could already be altering t as we

are writing it out. Life in parallel regions can get tricky!

Barrier
.
.
!$omp master
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
!$omp end master

!$omp barrier
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {
 print_trace(iter);
}
#pragma omp barrier
.
.

A barrier is executed by all threads only at:

A barrier command

Entry to and exit from a parallel region

Exit only from a worksharing command (like do/for)

Except if we use the nowait clause

There are no barriers for any other constructs including master and critical!

Solution with thread IDs

.

.
 tid = OMP_GET_THREAD_NUM()
 if(tid .eq. 0) then
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
 endif
.
.

.

.

.
tid = omp_get_thread_num();
if (tid == 0) {
 if((iter % 100) == 0) {
 print_trace(iter);
 }
}
.
.

Now we are using OpenMP runtime library routines, and not directives. We would

have to use ifdef if we wanted to preserve the serial version. Also, we should

include a barrier somewhere here as well.

Other Synchronization Directives & Clauses

single Like Master, but any thread will do. Has a copyprivate clause that can

be used to copy its private values to all other threads.

critical Only one thread at a time can go through this section. Can be named or

unnamed (only one thread in all unamed regions).

atomic Eliminates data race on this one specific, simple statement. More

efficient than critical.

ordered Forces serial order on loops.

nowait This clause will eliminate implied barriers on certain directives.

flush Even cache coherent architectures need this to eliminate possibility of

register storage issues. Tricky, but important iff you get tricky. We will

return to this.

Hints

These two directives now have hint clauses.

We will wait discuss those with locks in a

few slides. But they have great potential to

allow your code to automagically avoid

unnecessary waits to enter these regions.

Run-time Library Routines
OMP_SET_NUM_THREADS Sets the number of threads that will be used in the next parallel region

OMP_GET_NUM_THREADS Returns the number of threads that are currently in the team executing the parallel region from which it is called

OMP_GET_MAX_THREADS Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function

OMP_GET_THREAD_NUM Returns the thread number of the thread, within the team, making this call.

OMP_GET_THREAD_LIMIT Returns the maximum number of OpenMP threads available to a program

OMP_GET_NUM_PROCS Returns the number of processors that are available to the program

OMP_IN_PARALLEL Used to determine if the section of code which is executing is parallel or not

OMP_SET_DYNAMIC Enables or disables dynamic adjustment of the number of threads available for execution of parallel regions

OMP_GET_DYNAMIC Used to determine if dynamic thread adjustment is enabled or not

OMP_SET_NESTED Used to enable or disable nested parallelism

OMP_GET_NESTED Used to determine if nested parallelism is enabled or not

OMP_SET_SCHEDULE Sets the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_GET_SCHEDULE Returns the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_SET_MAX_ACTIVE_LEVELS Sets the maximum number of nested parallel regions

OMP_GET_MAX_ACTIVE_LEVELS Returns the maximum number of nested parallel regions

OMP_GET_LEVEL Returns the current level of nested parallel regions

OMP_GET_ANCESTOR_THREAD_NUM Returns, for a given nested level of the current thread, the thread number of ancestor thread

OMP_GET_TEAM_SIZE Returns, for a given nested level of the current thread, the size of the thread team

OMP_GET_ACTIVE_LEVEL Returns the number of nested, active parallel regions enclosing the task that contains the call

OMP_IN_FINAL Returns true if the routine is executed in the final task region; otherwise it returns false

OMP_INIT_LOCK Initializes a lock associated with the lock variable

OMP_DESTROY_LOCK Disassociates the given lock variable from any locks

OMP_SET_LOCK Acquires ownership of a lock

OMP_UNSET_LOCK Releases a lock

OMP_TEST_LOCK Attempts to set a lock, but does not block if the lock is unavailable

OMP_INIT_NEST_LOCK Initializes a nested lock associated with the lock variable

OMP_DESTROY_NEST_LOCK Disassociates the given nested lock variable from any locks

OMP_SET_NEST_LOCK Acquires ownership of a nested lock

OMP_UNSET_NEST_LOCK Releases a nested lock

OMP_TEST_NEST_LOCK Attempts to set a nested lock, but does not block if the lock is unavailable

....

Don't be intimidated.

These are either the equivalent of

directives, or complementary.

They can easily by mixed and matched

with directives.

Locks

Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - ending locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - ending locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - ending locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - ending locked region

#include <stdio.h>
#include <omp.h>

omp_lock_t my_lock;

int main() {

 omp_init_lock(&my_lock);

 #pragma omp parallel
 {

 int tid = omp_get_thread_num();
 int i;

 omp_set_lock(&my_lock);

 for (i = 0; i < 5; ++i) {
 printf("Thread %d - in locked region\n", tid);
 }

 printf("Thread %d - ending locked region\n", tid);

 omp_unset_lock(&my_lock);

 }

 omp_destroy_lock(&my_lock);
} This could have been done with just an omp critical!

Output

Pthreads like flexibility, and pitfalls.

We now have the ability to start coding just about any kind of thread flow we can

imagine. And we can start creating all kinds of subtle and non-repeatable bugs. This is

normally where we start the fun of cataloging all of the ways we can get into trouble:

Race conditions

Deadlocks

Livelocks

Missing flush

For most applications you are more likely to have multiple data structures that are

updated by multiple threads. You will need to protect them with locks and critical

regions. Picture a hash map with all threads allowed to insert/delete/lookup.

Thread A Thread B

Lock(USB Drive) Lock(File)
Lock(File) Lock(USB Drive)
Copy(File) Copy(File)
Unlock(File) Unlock(USB Drive)
Unlock(USB Drive) Unlock(File)

Deadlock

But more advanced than pthreads

Pthreads were standardized well before modern issues like thread affinity and

transactional memory become important (we'll discuss those next).

The solution for the pthreads approach is a bunch of non-standard extensions and a lot

of very ugly boiler-plate code.

We are about to see how powerful OpenMP is. We are going to get the some very

powerful capabilities with:

• Not much effort

• No performance overhead

• Portability

Transactional Memory

As multi-core threading became dominant, the hardware vendors saw the need to help

increase the efficiency of access to contended data structures. The answer we find on

modern processors is transactional memory.

Transactional memory is hardware support to

capture the full state of the memory access

code and data, such that it can be done

speculatively and rolled back if there is a

conflict. If contention is low, this allows the

thread to behave as though it is lock-free.

Arm Transactional Memory Implementation

From their latest online guide.

This is tricky stuff. It is one of the things that bit Intel with security problems, and AMD

and Arm took a long time to deploy it themselves.

Hints

OpenMP gives us an easy way to let our atomic or critical regions, and our

omp_init_lock_with_hint and omp_init_nest_lock_with_hint to use this underlaying

hardware to our benefit. Just add one of the following hint clauses (or parameter to the

lock).

• omp_sync_hint_uncontended: low contention is expected in this

operation, that is, few threads are expected to perform the operation

simultaneously in a manner that requires synchronization.

• omp_sync_hint_contended: high contention is expected in this operation,

that is, many threads are expected to perform the operation simultaneously

in a manner that requires synchronization.

• omp_sync_hint_speculative: the programmer suggests that the operation

should be implemented using speculative techniques such as transactional

memory.

• omp_sync_hint_nonspeculative: the programmer suggests that the

operation should not be implemented using speculative techniques such as

transactional memory.

* Nested locks are locks that can be set multiple times, and keep a count.

Memory affinity has been a non-portable pain for decades. It has steadily grown to be a very important performance

consideration. Thanks to OpenMP, there is finally a portable way to deal with it.

Just on a single node (our concern for OpenMP) we have:

Affinity

• Registers (including vector registers)

• Caches (multiple levels)

• RAM (processor local or NUMA memory)

• HBM?

• Accelerators?

• NVM?

These are being accessed in various patterns by:

• Loops (hopefully vectorized)

• Threads

• Processes

• Cores

• Processors

ORNL Cray XC30 Node

Easy Data Affinity

Here is a good example of how easy it can be to request data/thread affinity for a couple of tasks
that we know share data.

void related_tasks(float* A, int n){

 float* B;

 #pragma omp task shared(B) depend(out:B) affinity(A[0:n])
 {
 B = compute_B(A,n);
 }
 #pragma omp task firstprivate(B) depend(in:B) affinity (A[0:n])
 {
 update_B(B);
 }
 #pragma omp taskwait
}

We can also mange these issues with explicit control of our thread placement or closely controlled
management of our memory allocation. These approaches have also lacked any standard methods.
We only have time to present the basics here. The documentation is comprehensive:

Thread placement:

OMP_PLACES environment variable. It has lots of options and fine control mapping.

Clauses on parallel directive: primary, close, spread

Memory Allocation:

allocate clause on all data sharing directives

allocate directive

omp_alloc() and associated functions

The specifiers on these follow, and give you some idea of the kinds of hints/suggestions you can
provide:

Thread Placement and Memory Allocation

The specifiers in the new spec give you some idea of how many ways we can characterize this.

distance ≈ near, far Specifies the relative physical distance of the memory space with respect to the task the request binds to.

bandwidth ≈ highest, lowest Specifies the relative bandwidth of the memory space with respect to other memories in the system

latency ≈ highest, lowest Specifies the relative latency of the memory space with respect to other memories in the system.

location = Specifies the physical location of the memory space.

optimized = bandwidth, latency, capacity, none Specifies if the memory space underlying technology is optimized to maximize a

certain characteristic. The exact mapping of these values to actual technologies is implementation defined.

pagesize = positive integer Specifies the size of the pages used by the memory space.

permission = r, w, rw Specifies if read operations (r), write operations (w) or both (rw) are supported by the memory space.

capacity ≥ positive integer Specifies the physical capacity in bytes of the memory space. available ≥ positive integer Specifies the

current available capacity for new allocations in the memory space.

OpenMP 5.0 Memory Hierarchy Awareness

Much earlier I mentioned that vector instructions fall into the realm of “things you hope the compiler

addresses”. However as they have become so critical achieving available performance on newer

devices, the OpenMP 4.0 standard has included a simd directive to help you help the compiler. There

are two main calls for it.

1) Indicate a simple loop that should be vectorized. It may be an inner loop on a parallel for, or it

could be standalone.

#pragma omp parallel

{

 #pragma omp for

 for (int i=0; i<N; i++) {

 #pragma omp simd safelen(18)

 for (int j=18; j<N−18; j++) {

 A[i][j] = A[i][j−18] + sinf(B[i][j]);

 B[i][j] = B[i][j+18] + cosf(A[i][j]);

 }

 }

}

OpenMP SIMD Extension

There is dependency that

prohibits vectorization.

However, the code can be

vectorized for any given vector

length for array B and for

vectors shorter than 18

elements for array A.

2) Indicate that a function is vectorizable.

#pragma omp declare simd

float some_func(float x) {

 ...

 ...

}

#pragma omp declare simd

extern float some_func(float);

void other_func(float *restrict a, float *restrict x, int n) {

 for (int i=0; i<n; i++) a[i] = some_func(x[i]);

}

There are a ton of clauses (private, reduction, linear, reduction, etc.) that help you to assure safe

conditions for vectorization. They won’t get our attention today.

We won’t hype these any further. Suffice it to say that if the compiler report indicates that you are

missing vectorization opportunities, this adds a portable tool.

OpenMP SIMD Extension

flush - a step too far?

An example of the kind of low-level control you can achieve is the flush directive. An

experienced concurrent programmer may want to do risky stuff like reading and writing

shared variables from different threads (perhaps for rolling your own locks or mutexes). As

shared memory machines have cache issues and compiler instruction reordering that can

cause shared values to get out of sync, this is tricky business.

implicit barriers (as mentioned previously)

barrier (incurs synchronization penalty)

flush (no sync)

If you think you are wandering into this territory, a good reference for examples and

warnings is:

OpenMP Application Program Interface

http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

Most likely none of you will find this level of control advantageous.

Complexity vs. Efficiency

How much you will gain in efficiency by using these more flexible (dangerous)

routines depends upon your algorithm. How asynchronous can it be?

OpenMP Library API

OMP_SET_NUM_THREADS

OMP_SET_LOCK

flush

.

.

.

OpenMP Directives

omp parallel for

omp parallel do

Password cracking

(Using work farming)

Matrix Multiply

Prime Number

Finding ?

The general question is, how much time are threads spending at barriers?

If you can’t tell, profiling will.

Complex Simple

Scheduling

#pragma omp parallel for private (j) \

reduction(+:not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do
C Version

Fortran Version

We do have a way of greatly affecting the thread scheduling while still using do/for loops. That is

to use the schedule clause.

Let’s think about what happens with our prime number program if the loop iterations are just

evenly distributed across our processors. Some of our iterations/threads will finish much earlier

than others.

Scheduling Options

static, n Divides iterations evenly amongst threads. You can optionally specify the

chunk size to use.

dynamic, n As a thread finishes, it is assigned another. Default chunk size is 1.

guided, n Block size will decrease with each new assignment to account for

remaining iterations at that time. Chunk size specifies minimum (and

defaults to 1).

runtime Decided at runtime by OMP_SCHEDULE variable.

auto Let the compiler/runtime decide.

OpenMP 5 has now added modifiers (monotonic, nonmonotonic, simd) for use with the

above, but they seem not to be widely implemented yet.

Exercise 2: Improving Prime Number
(About 20 minutes)

Speed up the prime number count just using the scheduling options you have available.

1) Start with the prime_serial.c/f version in the OpenMP/Prime folder and then add the parallel

directives as per the previous lecture slides. See how much it speeds up on various thread counts.

Then…

2) Try various scheduling options to see if anything is effective at optimizing further. This

“empirical” approach is a perfectly reasonable, and safe, way to find some low-hanging fruit.

One Scheduling Solution

#pragma omp parallel for private (j) \

reduction(+:not_primes) \
schedule(dynamic)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes) schedule(dynamic)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version Fortran Version

Dynamic scheduling with a default chunksize (of 1).

Results

We get a pretty big win for little work and even less danger. The Fortran and C times

are almost exactly the same for this code.

Threads Default (s) Dynamic Speedup

Serial 30.0

2 22.3 15.2 1.5

4 13.0 8.1 1.6

8 7.6 4.2 1.8

16 4.2 2.2 1.9

28 2.4 1.2 2

500,000 iterations.

25X Serial!

OpenMP Environment
We've talked about a lot of tweakable configuration, and many of those parameters have multiple ways to set them (which

is helpful). One convenient way I like to get a snapshot of the system is to use the OMP_DISPLAY_ENV variable to display

most of the parameters. Just export OMP_DISPLAY_ENV=TRUE, or set it to VERBOSE for even more info.

OPENMP DISPLAY ENVIRONMENT BEGIN

 _OPENMP='201611'

 [host] OMP_CANCELLATION='FALSE'

 [host] OMP_DEFAULT_DEVICE='0'

 [host] OMP_DISPLAY_ENV='TRUE'

 [host] OMP_DYNAMIC='FALSE'

 [host] OMP_MAX_ACTIVE_LEVELS='2147483647'

 [host] OMP_MAX_TASK_PRIORITY='0'

 [host] OMP_NESTED='FALSE'

 [host] OMP_NUM_THREADS: value is not defined

 [host] OMP_PLACES: value is not defined

 [host] OMP_PROC_BIND='false'

 [host] OMP_SCHEDULE='static'

 [host] OMP_STACKSIZE='4M'

 [host] OMP_THREAD_LIMIT='2147483647'

 [host] OMP_WAIT_POLICY='PASSIVE'

OPENMP DISPLAY ENVIRONMENT END

C++

• private /shared, etc. work with objects

 constructors/destructor are called for private

 things can get complicated with firstprivate, threadprivate, etc.

• Probably biggest question is std:vector

 Safe if no reallocation: No push_back(), pop_back(), insert()

 Iterators are even allowed in for loop here

• Other containers less likely to just work

 For example, std::list (a doubly linked list) updated by multiple threads would be a

nightmare

• Note: MPI 3 and newer have dropped C++ specific API, so be aware if aiming for larger

scalability

Information Overload?
We have now covered just about everything with the exception of the GPU oriented stuff. I hope you

recall how much we accomplished with just a parallel for/do. Let’s recap. In HPC the most common

approach is to:

Look at your large, time-consuming for/do loops first

Deal with dependencies and reductions

Using private and reductions

Consider scheduling

If you find a lot of barrier time (via inspection or profiler) then:

Sections

Tasks

Run-time library

Locks

Barriers/nowaits

There will be projects, such as graph oriented algorithms, where it will be more natural to

just start with tasks, or another paradigm.

Some Alternatives
OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HIP

Khronos has now brought out SYCL

Fortran 2008+ threads (sophisticated but not consistently implemented)

C++11 threads are basic (no loops) but better than POSIX

C++17 brings parallel STL

C++20 atomic smart pointers, futures, latches and barriers, coroutines, transactional memory, task

blocks

Python threads are fake (due to Global Interpreter Lock)

DirectCompute (Microsoft) is not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Intel oneAPI (Includes DPC++ and extends SYCL)

Kokkos

	Slide 1: Advanced OpenMP
	Slide 2: What is Advanced OpenMP?
	Slide 3: Different Work Sharing Constructs
	Slide 4: The parallel Construct
	Slide 5: Multiple ways of specifying threads.
	Slide 6: Fortran 90
	Slide 7: Another Work Sharing Construct
	Slide 8: Sections
	Slide 9: And for ultimate flexibility: Tasks
	Slide 10: Summing An Array
	Slide 11: Recursively Summing An Array
	Slide 12: Recursively Summing An Array With Tasks
	Slide 13: Optimized Recursively Summing An Array With Tasks
	Slide 14: Fibonacci Tasks
	Slide 15: Task Capability
	Slide 16
	Slide 17
	Slide 18: Dynamic Dependencies
	Slide 19: Tasks Are Very Powerful
	Slide 20: Parallel Region Loops with C
	Slide 21: Parallel Region Loops with Fortran
	Slide 22: Thread control.
	Slide 23: Solution with Master
	Slide 24: Barrier
	Slide 25: Solution with thread IDs
	Slide 26: Other Synchronization Directives & Clauses
	Slide 27: Run-time Library Routines
	Slide 28: Locks
	Slide 29: Pthreads like flexibility, and pitfalls.
	Slide 30: But more advanced than pthreads
	Slide 31: Transactional Memory
	Slide 32: Hints
	Slide 33
	Slide 34: Easy Data Affinity
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: flush - a step too far?
	Slide 40: Complexity vs. Efficiency
	Slide 41: Scheduling
	Slide 42: Scheduling Options
	Slide 43: Exercise 2: Improving Prime Number (About 20 minutes)
	Slide 44: One Scheduling Solution
	Slide 45: Results
	Slide 46: OpenMP Environment
	Slide 47: C++
	Slide 48: Information Overload?
	Slide 49: Some Alternatives

